Suppr超能文献

荧光斑点显微镜术,一种用于观察活细胞中蛋白质聚集体动态变化的方法。

Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.

作者信息

Waterman-Storer C M, Desai A, Bulinski J C, Salmon E D

机构信息

Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.

出版信息

Curr Biol. 1998 Nov 5;8(22):1227-30. doi: 10.1016/s0960-9822(07)00515-5.

Abstract

Fluorescence microscopic visualization of fluorophore-conjugated proteins that have been microinjected or expressed in living cells and have incorporated into cellular structures has yielded much information about protein localization and dynamics [1]. This approach has, however, been limited by high background fluorescence and the difficulty of detecting movement of fluorescent structures because of uniform labeling. These problems have been partially alleviated by the use of more cumbersome methods such as three-dimensional confocal microscopy, laser photobleaching and photoactivation of fluorescence [2]. We report here a method called fluorescent speckle microscopy (FSM) that uses a very low concentration of fluorescent subunits, conventional wide-field fluorescence light microscopy and digital imaging with a low-noise, cooled charged coupled device (CCD) camera. A unique feature of this method is that it reveals the assembly dynamics, movement and turnover of protein assemblies throughout the image field of view at diffraction-limited resolution. We found that FSM also significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells. Our initial applications include the measurement of microtubule movements in mitotic spindles and actin retrograde flow in migrating cells.

摘要

对已显微注射到活细胞中或在活细胞中表达并整合到细胞结构中的荧光团偶联蛋白进行荧光显微镜观察,已经获得了许多有关蛋白质定位和动力学的信息[1]。然而,这种方法受到高背景荧光以及由于均匀标记而难以检测荧光结构运动的限制。通过使用更繁琐的方法,如三维共聚焦显微镜、激光光漂白和荧光光激活,这些问题已得到部分缓解[2]。我们在此报告一种称为荧光斑点显微镜(FSM)的方法,该方法使用极低浓度的荧光亚基、传统的宽场荧光显微镜以及配备低噪声、制冷电荷耦合器件(CCD)相机的数字成像技术。该方法的一个独特之处在于,它能在衍射极限分辨率下,在整个图像视野中揭示蛋白质组装体的组装动力学、运动和周转情况。我们发现,FSM还能显著降低离焦荧光,并大大提高活细胞厚区域中荧光标记结构及其动力学的可见性。我们最初的应用包括测量有丝分裂纺锤体中的微管运动以及迁移细胞中的肌动蛋白逆行流。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验