Weeks D P, Collis P S
Cell. 1976 Sep;9(1):15-27. doi: 10.1016/0092-8674(76)90048-9.
Flagellar regeneration in gametes of Chlamydomonas reinhardi is initiated within 15-20 min after flagellar amputation and proceeds at a rapid but decelerating rate until by 90 min flagellar outgrowth in 80-85% complete. Sufficient flagellar protein reserves exist in the cytoplasm to allow regeneration of flagella 1/3-1/2 normal length. Nevertheless, in vivo labeling with 14C-amino acids shows that microtubule protein and other flagellar proteins are synthesized de novo during flagellar regeneration. To determine whether tubulin is synthesized continuously by gametic cells or whether its synthesis is induced as a consequence of deflagellation, we have isolated polyribosomes from deflagellated and control cells, and analyzed the proteins produced by these polyribosomes during in vitro translation. Two proteins of 53,000 and 56,000 molecular weight which co-migrate with flagellar and chick brain tubulin on SDS-polyacrylamide gels and which selectively co-assemble with chick brain tubulin during in vitro microtubule assembly are synthesized by polyribosomes (or polyadenylated mRNA) from deflagellated cells. No microtubule proteins can be detected in the translation products synthesized by polyribosomes (or mRNA) from control cells, clearly indicating that deflagellation results in the induction ot tubulin synthesis. Kinetics of tubulin synthesis demonstrate that induction takes place immediately after deflagellation; polyribosomes bearing tubulin mRNA can be detected in the cytoplasm in as little as 15 min after removal of flagella. Maximal rates of tubulin synthesis occur between 45 and 90 min after deflagellation when approximately 14% of the protein being synthesized by the cell is tubulin. This estimate of tubulin synthesis based on in vitro translation data agrees well with in vivo measurements of flagellar tubulin synthesis. While high levels of tubulin production extend well beyond the period of rapid flagellar assembly, synthesis begins to decline after 90 min, and by 180 min after deflagellation only low levels of tubulin mRNA are detectable in polyribosomes.
莱茵衣藻配子中的鞭毛再生在鞭毛被切断后15 - 20分钟内启动,并以快速但逐渐减速的速度进行,直到90分钟时,80 - 85%的鞭毛生长完成。细胞质中存在足够的鞭毛蛋白储备,足以使鞭毛再生至正常长度的1/3 - 1/2。然而,用14C - 氨基酸进行的体内标记显示,微管蛋白和其他鞭毛蛋白在鞭毛再生过程中是重新合成的。为了确定配子细胞是否持续合成微管蛋白,或者其合成是否是去鞭毛作用的结果,我们从去鞭毛的细胞和对照细胞中分离出多核糖体,并分析了这些多核糖体在体外翻译过程中产生的蛋白质。在SDS - 聚丙烯酰胺凝胶上与鞭毛和鸡脑微管蛋白共迁移、并在体外微管组装过程中与鸡脑微管蛋白选择性共组装的两种分子量分别为53,000和56,000的蛋白质,是由去鞭毛细胞的多核糖体(或聚腺苷酸化mRNA)合成的。在对照细胞的多核糖体(或mRNA)合成的翻译产物中检测不到微管蛋白,这清楚地表明去鞭毛作用导致了微管蛋白合成的诱导。微管蛋白合成的动力学表明,诱导在去鞭毛后立即发生;去除鞭毛后仅15分钟,就能在细胞质中检测到携带微管蛋白mRNA的多核糖体。微管蛋白合成的最大速率出现在去鞭毛后45至90分钟之间,此时细胞合成的蛋白质中约14%是微管蛋白。基于体外翻译数据对微管蛋白合成的这一估计与鞭毛微管蛋白合成的体内测量结果非常吻合。虽然高水平的微管蛋白产生远远超出了快速鞭毛组装的时期,但合成在90分钟后开始下降,到去鞭毛后180分钟,在多核糖体中只能检测到低水平的微管蛋白mRNA。