Kadrmas J L, Allaway D, Studholme R E, Sullivan J T, Ronson C W, Poole P S, Raetz C R
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Biol Chem. 1998 Oct 9;273(41):26432-40. doi: 10.1074/jbc.273.41.26432.
The lipopolysaccharide (LPS) core of the Gram-negative bacterium Rhizobium leguminosarum is more amenable to enzymatic study than that of Escherichia coli because much of it is synthesized from readily available sugar nucleotides. The inner portion of the R. leguminosarum core contains mannose, galactose, and three 3-deoxy-D-manno-octulosonate (Kdo) residues, arranged in the order: lipid A-(Kdo)2-Man-Gal-Kdo-[O antigen]. A mannosyltransferase that uses GDP-mannose and the conserved precursor Kdo2-[4'-32P]lipid IVA (Kadrmas, J. L., Brozek, K. A., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32119-32125) is proposed to represent a key early enzyme in R. leguminosarum core assembly. Conditions for demonstrating efficient galactosyl- and distal Kdo-transferase activities are now described using a coupled assay system that starts with GDP-mannose and Kdo2-[4'-32P]lipid IVA. As predicted, mannose incorporation precedes galactose addition, which in turn precedes distal Kdo transfer. LPS core mutants with Tn5 insertions in the genes encoding the putative galactosyltransferase (lpcA) and the distal Kdo-transferase (lpcB) are shown to be defective in the corresponding in vitro glycosylation of Kdo2-[4'-32P]lipid IVA. We have also discovered the new gene (lpcC) that encodes the mannosyltransferase. The gene is separated by several kilobase pairs from the lpcAB cluster. All three glycosyltransferases are carried on cosmid pIJ1848, which contains at least 20 kilobase pairs of R. leguminosarum DNA. Transfer of pIJ1848 into R. meliloti 1021 results in heterologous expression of all three enzymes, which are not normally present in strain 1021. Expression of the lpc genes individually behind the T7 promoter results in the production of each R. leguminosarum glycosyltransferase in E. coli membranes in a catalytically active form, demonstrating that lpcA, lpcB, and lpcC are structural genes.
与大肠杆菌相比,豆科根瘤菌革兰氏阴性菌的脂多糖(LPS)核心更适合进行酶学研究,因为其大部分是由易于获得的糖核苷酸合成的。豆科根瘤菌核心的内部含有甘露糖、半乳糖和三个3-脱氧-D-甘露糖辛酮酸(Kdo)残基,排列顺序为:脂质A-(Kdo)2-甘露糖-半乳糖-Kdo-[O抗原]。一种使用GDP-甘露糖和保守前体Kdo2-[4'-32P]脂质IVA的甘露糖基转移酶(Kadrmas,J. L.,Brozek,K. A.,和Raetz,C. R. H.(1996)J. Biol. Chem. 271,32119-32125)被认为是豆科根瘤菌核心组装中的一种关键早期酶。现在描述了使用从GDP-甘露糖和Kdo2-[4'-32P]脂质IVA开始的偶联测定系统来证明高效半乳糖基和远端Kdo转移酶活性的条件。正如所预测的,甘露糖的掺入先于半乳糖的添加,而半乳糖的添加又先于远端Kdo的转移。在编码假定的半乳糖基转移酶(lpcA)和远端Kdo转移酶(lpcB)的基因中带有Tn5插入的LPS核心突变体,在相应的Kdo2-[4'-32P]脂质IVA体外糖基化中表现出缺陷。我们还发现了编码甘露糖基转移酶的新基因(lpcC)。该基因与lpcAB簇相隔几千个碱基对。所有三种糖基转移酶都携带在粘粒pIJ1848上,该粘粒包含至少20千碱基对的豆科根瘤菌DNA。将pIJ1848转移到苜蓿中华根瘤菌1021中导致所有三种酶的异源表达,而这些酶在1021菌株中通常不存在。在T7启动子后面单独表达lpc基因会导致每种豆科根瘤菌糖基转移酶以催化活性形式在大肠杆菌膜中产生,这表明lpcA、lpcB和lpcC是结构基因。