Suppr超能文献

TnrA和ResDE对枯草芽孢杆菌中编码依赖NADH的亚硝酸还原酶的nasDEF进行氮和氧调控

Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE.

作者信息

Nakano M M, Hoffmann T, Zhu Y, Jahn D

机构信息

Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA mnakano @bmb.ogi.edu

出版信息

J Bacteriol. 1998 Oct;180(20):5344-50. doi: 10.1128/JB.180.20.5344-5350.1998.

Abstract

The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.

摘要

枯草芽孢杆菌的硝酸盐还原酶和亚硝酸盐还原酶具有两种不同的生理功能。在氮限制条件下,这些酶催化硝酸盐经亚硝酸盐还原为氨,以便将氮合成代谢性地掺入生物分子中。它们在无氧呼吸的分解代谢中也发挥作用,无氧呼吸涉及利用硝酸盐和亚硝酸盐作为末端电子受体。由narGHI和nasBC编码的两种不同的硝酸盐还原酶分别在合成代谢和分解代谢的氮代谢中发挥作用。然而,如本文所报道的,由nasDE基因编码的单一依赖NADH的可溶性亚硝酸盐还原酶在分解代谢和合成代谢过程中都是必需的。nasDE基因与nasBC(编码同化硝酸盐还原酶)和nasF(亚硝酸盐还原酶西罗血红素辅因子形成所必需的)共同构成nas操纵子。所呈现的数据表明,nasDEF的转录不仅由先前鉴定的nas操纵子启动子驱动,还由位于nasC和nasD基因之间的内部启动子驱动。在需氧生长期间,通过氮调节因子TnrA,氮限制可激活这两个启动子的转录。然而,在氧限制条件下,nasDEF的表达和亚硝酸盐还原酶活性被显著诱导。nasDEF的厌氧诱导需要ResDE双组分调节系统和亚硝酸盐 的存在,这表明在硝酸盐呼吸过程中,NasDEF与呼吸硝酸盐还原酶NarGHI存在部分共调节。

相似文献

3
Anaerobic growth of a "strict aerobe" (Bacillus subtilis).
Annu Rev Microbiol. 1998;52:165-90. doi: 10.1146/annurev.micro.52.1.165.
4
Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE.
J Bacteriol. 1998 Jan;180(1):186-9. doi: 10.1128/JB.180.1.186-189.1998.
6
Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).
J Bacteriol. 2001 Dec;183(23):6815-21. doi: 10.1128/JB.183.23.6815-6821.2001.
7
Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis.
Mol Microbiol. 2000 Sep;37(5):1198-207. doi: 10.1046/j.1365-2958.2000.02075.x.
9
Regulation of nitrate and nitrite reductase synthesis in enterobacteria.
Antonie Van Leeuwenhoek. 1994;66(1-3):37-45. doi: 10.1007/BF00871631.

引用本文的文献

3
Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria.
Front Microbiol. 2024 Mar 21;15:1345389. doi: 10.3389/fmicb.2024.1345389. eCollection 2024.
4
Glutamine synthetase and GlnR regulate nitrogen metabolism in WLY78.
Appl Environ Microbiol. 2023 Sep 28;89(9):e0013923. doi: 10.1128/aem.00139-23. Epub 2023 Sep 5.
6
Mixed heavy metal stress induces global iron starvation response.
ISME J. 2023 Mar;17(3):382-392. doi: 10.1038/s41396-022-01351-3. Epub 2022 Dec 26.
7
Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective.
J Adv Res. 2023 Jul;49:1-14. doi: 10.1016/j.jare.2022.09.003. Epub 2022 Sep 12.

本文引用的文献

1
Anaerobic growth of a "strict aerobe" (Bacillus subtilis).
Annu Rev Microbiol. 1998;52:165-90. doi: 10.1146/annurev.micro.52.1.165.
2
Mutational analysis of the TnrA-binding sites in the Bacillus subtilis nrgAB and gabP promoter regions.
J Bacteriol. 1998 Jun;180(11):2943-9. doi: 10.1128/JB.180.11.2943-2949.1998.
3
Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE.
J Bacteriol. 1998 Jan;180(1):186-9. doi: 10.1128/JB.180.1.186-189.1998.
4
Adaptation of Bacillus subtilis to oxygen limitation.
FEMS Microbiol Lett. 1997 Dec 1;157(1):1-7. doi: 10.1111/j.1574-6968.1997.tb12744.x.
5
The complete genome sequence of the gram-positive bacterium Bacillus subtilis.
Nature. 1997 Nov 20;390(6657):249-56. doi: 10.1038/36786.
9
TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis.
Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8841-5. doi: 10.1073/pnas.93.17.8841.
10
Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis.
J Bacteriol. 1996 Jul;178(13):3803-8. doi: 10.1128/jb.178.13.3803-3808.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验