Conchello J A
Institute for Biomedical Computing, Washington University, St. Louis, Missouri 63110, USA.
J Opt Soc Am A Opt Image Sci Vis. 1998 Oct;15(10):2609-19. doi: 10.1364/josaa.15.002609.
Computational optical-sectioning microscopy with a nonconfocal microscope is fundamentally limited because the optical transfer function, the Fourier transform of the point-spread function, is exactly zero over a conic region of the spatial-frequency domain. Because of this missing cone of optical information, images are potentially artifactual. To overcome this limitation, superresolution, in the sense of band extrapolation, is necessary. I present a frequency-domain analysis of the expectation-maximization algorithm for maximum-likelihood image estimation that shows how the algorithm achieves this band extrapolation. This analysis gives the theoretical absolute bandwidth of the restored image; however, this absolute value may not be realistic in many cases. Then a second analysis is presented that assumes a Gaussian point-spread function and a specimen function and shows more realistic behavior of the algorithm and demonstrates some of its properties. Experimental results on the superresolving capability of the algorithm are also presented.
使用非共聚焦显微镜的计算光学切片显微镜从根本上受到限制,因为光学传递函数(点扩散函数的傅里叶变换)在空间频率域的一个圆锥区域上恰好为零。由于这个光学信息缺失的圆锥,图像可能存在伪像。为了克服这一限制,从频带外推的意义上讲,超分辨率是必要的。我给出了用于最大似然图像估计的期望最大化算法的频域分析,展示了该算法如何实现这种频带外推。这种分析给出了恢复图像的理论绝对带宽;然而,在许多情况下这个绝对值可能不现实。然后给出了第二种分析,它假设了高斯点扩散函数和样本函数,并展示了该算法更现实的行为并证明了它的一些性质。还给出了关于该算法超分辨能力的实验结果。