Suppr超能文献

pH 依赖性机制对哺乳动物单根肌纤维不同强度疲劳的作用。

The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres.

作者信息

Chin E R, Allen D G

机构信息

Institute of Biomedical Research and Department of Physiology F13, University of Sydney, NSW 2006, Australia.

出版信息

J Physiol. 1998 Nov 1;512 ( Pt 3)(Pt 3):831-40. doi: 10.1111/j.1469-7793.1998.831bd.x.

Abstract
  1. The contribution of intracellular pH (pHi) to the failure of Ca2+ release and inhibition of contractile proteins observed during fatigue was assessed in single intact mouse muscle fibres at 22 C. Fatigue was induced by repeated tetani at intensities designed to induce different levels of intracellular acidosis. Force and either intracellular free Ca2+ concentration ([Ca2+]i; measured using indo-1) or pHi (measured using SNARF-1) were recorded in fibres fatigued at two different intensities. 2. Intensity was varied by the repetition rate of tetani and quantified by the duty cycle (the fraction of time when the muscle was tetanized). Stimulation at the low intensity (duty cycle approximately 0.1) reduced force to 30 % of initial values in 206 +/- 21 s (60 +/- 7 tetani); at the high intensity (duty cycle approximately 0.3) force was reduced to 30% in 42 +/- 7 s (43 +/- 7 tetani) (P < 0.05; n = 14). 3. When force was reduced to 30 % of initial values, tetanic [Ca2+]i had fallen from 648 +/- 87 to 336 +/- 64 nM (48% decrease) at the low intensity but had only fallen from 722 +/- 84 to 468 +/- 60 nM (35% decrease) at the higher intensity (P < 0.05 low vs. high intensity; n = 7). 4. Fatigue resulted in reductions in Ca2+ sensitivity of the contractile proteins which were greater at the high intensity (pre-fatigue [Ca2+]i required for 50 % of maximum force (Ca50) = 354 +/- 23 nM; post-fatigue Ca50 = 421 +/- 48 nM and 524 +/- 43 nM for low and high intensities, respectively). Reductions in maximum Ca2+-activated force (Fmax) were similar at the two intensities (pre-fatigue Fmax = 328 +/- 22 microN; post-fatigue Fmax = 271 +/- 20 and 265 +/- 19 microN for low and high intensities, respectively). 5. Resting pHi was 7.15 +/- 0.05. During fatigue at the low intensity, pHi was reduced by 0.12 +/- 0.02 pH units and at the high intensity pHi was reduced by 0.34 +/- 0.07 pH units (P < 0.05; n = 5). 6. Our results indicate that the more rapid fall in force at a high intensity is due to a reduction in Ca2+ sensitivity of the contractile proteins, probably related to the greater acidosis. Our data also indicate that the failure of Ca2+ release and reduced maximum Ca2+-activated force observed during fatigue are not due to reductions in intracellular pH.
摘要
  1. 在22℃下,对单个完整的小鼠肌肉纤维进行实验,评估细胞内pH值(pHi)对疲劳过程中观察到的Ca2+释放失败和收缩蛋白抑制的影响。通过以旨在诱导不同程度细胞内酸中毒的强度进行重复强直刺激来诱导疲劳。记录在两种不同强度下疲劳的纤维中的力以及细胞内游离Ca2+浓度([Ca2+]i;使用indo-1测量)或pHi(使用SNARF-1测量)。2. 通过强直刺激的重复率改变强度,并通过占空比(肌肉处于强直收缩状态的时间分数)进行量化。低强度刺激(占空比约为0.1)在206±21秒(60±7次强直刺激)内将力降低至初始值的30%;高强度刺激(占空比约为0.3)在42±7秒(43±7次强直刺激)内将力降低至30%(P<0.05;n = 14)。3. 当力降低至初始值的30%时,低强度下强直收缩时的[Ca2+]i从648±87 nM降至336±64 nM(降低48%),而高强度下仅从722±84 nM降至468±60 nM(降低35%)(低强度与高强度相比,P<0.05;n = 7)。4. 疲劳导致收缩蛋白的Ca2+敏感性降低,高强度下更为明显(产生最大力的50%所需的疲劳前[Ca2+]i(Ca50):低强度为354±23 nM;高强度为524±43 nM,疲劳后分别为421±48 nM和524±43 nM)。两种强度下最大Ca2+激活力(Fmax)的降低相似(疲劳前Fmax:低强度为328±22 μN;高强度为328±22 μN,疲劳后分别为271±20 μN和265±19 μN)。5. 静息pHi为7.15±0.05。在低强度疲劳期间,pHi降低0.12±0.02个pH单位,在高强度疲劳期间,pHi降低0.34±0.07个pH单位(P<0.05;n = 5)。6. 我们的结果表明,高强度下力下降更快是由于收缩蛋白Ca2+敏感性降低,可能与更严重的酸中毒有关。我们的数据还表明,疲劳期间观察到的Ca2+释放失败和最大Ca2+激活力降低并非由于细胞内pH值降低。

相似文献

1
pH 依赖性机制对哺乳动物单根肌纤维不同强度疲劳的作用。
J Physiol. 1998 Nov 1;512 ( Pt 3)(Pt 3):831-40. doi: 10.1111/j.1469-7793.1998.831bd.x.
2
细胞内[Ca2+]升高在小鼠单根肌纤维低频疲劳发展中的作用。
J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):813-24. doi: 10.1113/jphysiol.1996.sp021259.
3
肌肉糖原浓度降低对完整小鼠骨骼肌力量、Ca2+释放及收缩蛋白功能的影响。
J Physiol. 1997 Jan 1;498 ( Pt 1)(Pt 1):17-29. doi: 10.1113/jphysiol.1997.sp021838.
4
ATP在小鼠骨骼肌单纤维细胞内钙释放调节中的作用。
J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):587-600. doi: 10.1113/jphysiol.1997.sp021885.
5
28摄氏度下二氧化碳诱导的酸化对单根小鼠肌纤维抗疲劳能力的影响。
J Appl Physiol (1985). 1998 Aug;85(2):478-83. doi: 10.1152/jappl.1998.85.2.478.
6
肌钙蛋白C在调节哺乳动物去表皮心肌和骨骼肌纤维的Ca2+敏感性中的作用。
J Physiol. 1994 Oct 1;480 ( Pt 1)(Pt 1):45-60. doi: 10.1113/jphysiol.1994.sp020339.
7
细胞内pH值对完整的小鼠肌肉单纤维收缩功能的影响随温度升高而下降。
J Physiol. 1997 Apr 1;500 ( Pt 1)(Pt 1):193-204. doi: 10.1113/jphysiol.1997.sp022009.
8
肌酸激酶注射可恢复肌酸激酶缺陷型小鼠骨骼肌纤维的收缩功能。
J Physiol. 2003 Mar 1;547(Pt 2):395-403. doi: 10.1113/jphysiol.2002.034793. Epub 2003 Jan 17.
9
重复拉伸收缩后单根小鼠肌纤维中的细胞内钙与力量
J Physiol. 1995 Oct 1;488 ( Pt 1)(Pt 1):25-36. doi: 10.1113/jphysiol.1995.sp020943.
10
非洲爪蟾离体单根骨骼肌纤维在连续疲劳收缩期间的细胞内pH值。
J Appl Physiol (1985). 2005 Jul;99(1):308-12. doi: 10.1152/japplphysiol.01361.2004. Epub 2005 Mar 10.

引用本文的文献

1
肌钙蛋白和一种与肌病相关的突变抑制原肌球蛋白 2 诱导的细肌丝解聚。
Int J Mol Sci. 2023 Nov 17;24(22):16457. doi: 10.3390/ijms242216457.
2
从头设计一种用于多维量化胞吞动力学的膜锚探针。
Adv Healthc Mater. 2022 Apr;11(8):e2102185. doi: 10.1002/adhm.202102185. Epub 2022 Jan 27.
3
补充碳酸氢钠对柔术运动员胃肠道不适症状、酸碱平衡及运动表现的急性影响。
J Hum Kinet. 2020 Oct 31;75:85-93. doi: 10.2478/hukin-2020-0039. eCollection 2020 Oct.
4
尼曼-皮克病 A/B 型小鼠模型损伤后肌细胞膜修复缺陷与骨骼肌功能障碍。
Skelet Muscle. 2019 Jan 5;9(1):1. doi: 10.1186/s13395-018-0187-5.
5
补充β-丙氨酸对高强度运动期间肌肉pH值及功率-持续时间关系的影响。
Front Physiol. 2018 Feb 21;9:111. doi: 10.3389/fphys.2018.00111. eCollection 2018.
6
骨骼肌中的兴奋-收缩偶联机制。
Biophys Rev. 2014 Mar;6(1):133-160. doi: 10.1007/s12551-013-0135-x. Epub 2014 Jan 24.
8
抗阻训练中的设置配置:肌肉疲劳和心血管效应。
PLoS One. 2016 Mar 16;11(3):e0151163. doi: 10.1371/journal.pone.0151163. eCollection 2016.
10
在营养不良小鼠模型中,肌浆网Ca2+-ATP酶1(SERCA1)过表达可使骨骼肌损伤最小化。
Am J Physiol Cell Physiol. 2015 May 1;308(9):C699-709. doi: 10.1152/ajpcell.00341.2014. Epub 2015 Feb 4.

本文引用的文献

1
细胞内钙和代谢产物在小鼠骨骼肌低频疲劳中的作用。
Am J Physiol. 1997 Feb;272(2 Pt 1):C550-9. doi: 10.1152/ajpcell.1997.272.2.C550.
2
细胞内pH值对完整的小鼠肌肉单纤维收缩功能的影响随温度升高而下降。
J Physiol. 1997 Apr 1;500 ( Pt 1)(Pt 1):193-204. doi: 10.1113/jphysiol.1997.sp022009.
3
钙离子和咖啡因诱导大鼠去表皮小梁肌浆网释放钙离子:pH值和无机磷酸盐的影响
Cardiovasc Res. 1997 Feb;33(2):314-23. doi: 10.1016/s0008-6363(96)00217-9.
4
ATP在小鼠骨骼肌单纤维细胞内钙释放调节中的作用。
J Physiol. 1997 Feb 1;498 ( Pt 3)(Pt 3):587-600. doi: 10.1113/jphysiol.1997.sp021885.
5
小鼠和大鼠心肌中酸性pH降低张力的Ca2+敏感性的分子基础。
J Card Fail. 1996 Dec;2(4):319-26. doi: 10.1016/s1071-9164(96)80019-4.
6
管腔pH调节肌浆网囊泡中的钙释放动力学。
Biochemistry. 1996 Oct 15;35(41):13419-25. doi: 10.1021/bi9616209.
7
细胞内[Ca2+]升高会消除大鼠和蟾蜍骨骼肌纤维中的兴奋-收缩偶联。
J Physiol. 1995 Dec 1;489 ( Pt 2)(Pt 2):349-62. doi: 10.1113/jphysiol.1995.sp021056.
8
细胞内[Ca2+]升高在小鼠单根肌纤维低频疲劳发展中的作用。
J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):813-24. doi: 10.1113/jphysiol.1996.sp021259.
9
低[ATP]对蟾蜍骨骼肌纤维去极化诱导的Ca2+释放的影响。
J Physiol. 1996 Jun 1;493 ( Pt 2)(Pt 2):309-15. doi: 10.1113/jphysiol.1996.sp021385.
10
细胞内和细胞外离子变化对兴奋-收缩偶联及骨骼肌疲劳的影响。
Acta Physiol Scand. 1996 Mar;156(3):169-81. doi: 10.1046/j.1365-201X.1996.191000.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验