Nau R, Sörgel F, Prange H W
Department of Neurology, University of Göttingen, Germany.
Clin Pharmacokinet. 1998 Sep;35(3):223-46. doi: 10.2165/00003088-199835030-00005.
Central nervous system (CNS) infections caused by bacteria with reduced sensitivity to antibacterials are an increasing worldwide challenge. In successfully treating these infections the following conditions should be considered: (i) Antibacterials do not distribute homogeneously in the central nervous compartments [cerebrospinal fluid (CSF), extracellular space of the nervous tissue, intracellular space of the neurons, glial cells and leucocytes]. Even within the CSF, after intravenous administration, a ventriculo-lumbar concentration gradient is often observed. (ii) Valid parameters of drug entry into the CSF are the CSF: serum concentration ratio in steady state and the CSF: serum ratio of the area under the concentration-time curves (AUCCSF/AUCS). Frequently, the elimination half-life (t1/2 beta) in CSF is longer than t1/2 beta in serum. (iii) For most antibacterials, lipophilicity, molecular weight and serum protein binding determine the drug entry into the CSF and brain tissue. With an intact blood-CSF and blood-brain barrier, the entry of hydrophilic antibacterials (beta-lactam antibacterials, glycopeptides) into the CNS compartments is poor and increases during meningeal inflammation. More lipophilic compounds [metronidazole, quinolones, rifampicin (rifampin) and chloramphenicol] are less dependent on the function of the blood-CSF and blood-brain barrier. (iv) Determination of the minimal inhibitory concentrations (MIC) of the causative organism is necessary for optimisation of treatment. (v) For rapid sterilisation of CSF, drug concentrations of at least 10 times MIC are required. The minimum CSF concentration: MIC ratio ensuring successful therapy is unknown. Strategies to achieve optimum antibacterial concentrations in the presence of minor disturbances of the blood-CSF and blood-brain barrier include, the increased use of low toxicity antibacterials (e.g., beta-lactam antibiotics), the use of moderately lipophilic compounds, and the combination of intravenous and intraventricular administration. Antibacterials which do not interfere with bacterial cell wall synthesis delay and/or decrease the liberation of proinflammatory bacterial products, delay or inhibit tumour necrosis factor release, and may reduce brain oedema in experimental meningitis. Conclusive evidence of the reduction of neuronal damage by this approach, however, is lacking.
对抗菌药物敏感性降低的细菌引起的中枢神经系统(CNS)感染在全球范围内构成了日益严峻的挑战。在成功治疗这些感染时,应考虑以下情况:(i)抗菌药物在中枢神经腔室[脑脊液(CSF)、神经组织细胞外间隙、神经元、胶质细胞和白细胞的细胞内间隙]中分布不均匀。即使在静脉给药后,在脑脊液中也常常观察到脑室 - 腰椎浓度梯度。(ii)药物进入脑脊液的有效参数是稳态时脑脊液与血清浓度比以及浓度 - 时间曲线下面积的脑脊液与血清比(AUCCSF/AUCS)。通常,脑脊液中的消除半衰期(t1/2β)比血清中的t1/2β长。(iii)对于大多数抗菌药物,亲脂性、分子量和血清蛋白结合决定了药物进入脑脊液和脑组织的情况。在血脑屏障和血脑脊液屏障完整的情况下,亲水性抗菌药物(β - 内酰胺类抗菌药物、糖肽类)进入中枢神经腔室的情况较差,而在脑膜炎症期间会增加。亲脂性更强的化合物[甲硝唑、喹诺酮类、利福平(rifampin)和氯霉素]对血脑脊液屏障和血脑屏障功能的依赖性较小。(iv)确定病原体的最低抑菌浓度(MIC)对于优化治疗是必要的。(v)为了使脑脊液快速灭菌,需要至少10倍MIC的药物浓度。确保成功治疗的最低脑脊液浓度与MIC的比值尚不清楚。在血脑脊液屏障和血脑屏障存在轻微干扰的情况下,实现最佳抗菌浓度的策略包括增加使用低毒性抗菌药物(例如β - 内酰胺类抗生素)、使用中度亲脂性化合物以及静脉内和脑室内联合给药。不干扰细菌细胞壁合成的抗菌药物可延迟和/或减少促炎细菌产物的释放,延迟或抑制肿瘤坏死因子的释放,并可能减轻实验性脑膜炎中的脑水肿。然而,缺乏通过这种方法减少神经元损伤的确凿证据。