Lee C, Huh S, Ketter T A, Unser M
Division of Electrical Engineering, Yonsei University, Seoul, South Korea.
Comput Biol Med. 1998 May;28(3):309-38. doi: 10.1016/s0010-4825(98)00013-4.
In this paper, we propose an algorithm for automated segmentation of midsagittal brain MR images. First, we apply thresholding to obtain binary images. From the binary images, we locate some landmarks. Based on the landmarks and anatomical information, we preprocess the binary images, which substantially simplifies the subsequent operations. To separate regions what are incorrectly merged after this initial segmentation, a new connectivity-based threshold algorithm is proposed. Assuming that some prior information about the general shape and location of objects is available, the algorithm finds a boundary between two regions using the path connection algorithm and changing the threshold adaptively. In order to test the robustness of the proposed algorithm we applied the algorithm to 120 midsagittal brain images and obtained satisfactory results.
在本文中,我们提出了一种用于自动分割大脑正中矢状面磁共振图像的算法。首先,我们应用阈值处理来获取二值图像。从二值图像中,我们定位一些地标点。基于这些地标点和解剖学信息,我们对二值图像进行预处理,这大大简化了后续操作。为了分离在初始分割后错误合并的区域,我们提出了一种新的基于连通性的阈值算法。假设可获得关于物体大致形状和位置的一些先验信息,该算法使用路径连接算法并自适应地改变阈值来找到两个区域之间的边界。为了测试所提出算法的鲁棒性,我们将该算法应用于120幅大脑正中矢状面图像并获得了满意的结果。