Suppr超能文献

基于标记的分水岭变换进行脑提取。

Brain extraction using the watershed transform from markers.

机构信息

Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia ; Stroke and Aging Research Group, Department of Medicine, Southern Clinical School, Monash University Melbourne, VIC, Australia.

Developmental Imaging, Murdoch Childrens Research Institute Melbourne, VIC, Australia.

出版信息

Front Neuroinform. 2013 Dec 9;7:32. doi: 10.3389/fninf.2013.00032. eCollection 2013.

Abstract

Isolation of the brain from other tissue types in magnetic resonance (MR) images is an important step in many types of neuro-imaging research using both humans and animal subjects. The importance of brain extraction is well appreciated-numerous approaches have been published and the benefits of good extraction methods to subsequent processing are well known. We describe a tool-the marker based watershed scalper (MBWSS)-for isolating the brain in T1-weighted MR images built using filtering and segmentation components from the Insight Toolkit (ITK) framework. The key elements of MBWSS-the watershed transform from markers and aggressive filtering with large kernels-are techniques that have rarely been used in neuroimaging segmentation applications. MBWSS is able to reliably isolate the brain without expensive preprocessing steps, such as registration to an atlas, and is therefore useful as the first stage of processing pipelines. It is an informative example of the level of accuracy achievable without using priors in the form of atlases, shape models or libraries of examples. We validate the MBWSS using a publicly available dataset, a paediatric cohort, an adolescent cohort, intra-surgical scans and demonstrate flexibility of the approach by modifying the method to extract macaque brains.

摘要

在磁共振(MR)图像中,将大脑与其他组织类型分离是使用人类和动物受试者进行许多类型神经影像学研究的重要步骤。大脑提取的重要性是众所周知的——已经发表了许多方法,并且众所周知,良好的提取方法对后续处理有好处。我们描述了一种工具——基于标记的分水岭剥皮器(MBWSS)——用于在使用 Insight Toolkit(ITK)框架的滤波和分割组件构建的 T1 加权 MR 图像中分离大脑。MBWSS 的关键要素——基于标记的分水岭变换和使用大核的激进滤波——是在神经影像学分割应用中很少使用的技术。MBWSS 能够可靠地分离大脑,而无需昂贵的预处理步骤,例如与图谱的配准,因此它是处理管道的第一阶段的有用工具。它是一个很好的例子,说明了在不使用图谱、形状模型或示例库等先验信息的情况下可以达到的精确程度。我们使用公开可用的数据集、儿科队列、青少年队列、术中扫描验证了 MBWSS,并通过修改该方法提取猕猴大脑来证明该方法的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eeb/3856384/38d89bd943bc/fninf-07-00032-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验