Cardinale R M, Benedict S H, Wu Q, Zwicker R D, Gaballa H E, Mohan R
Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
Int J Radiat Oncol Biol Phys. 1998 Sep 1;42(2):431-6. doi: 10.1016/s0360-3016(98)00206-5.
Linac arc based stereotactic radiotherapy is being used with increasing frequency to treat brain tumors. This approach can be used for single or fractionated treatments, and is typically carried out with circular collimators which are optimal for small, spherical targets. Treatment planning using fixed noncoplanar beams or intensity-modulated beams may enhance the ability to conform to irregularly shaped and/or large tumors, especially when combined with stereotactic localization. We compare the dose conformity and normal brain dose characteristics of three stereotactic techniques for various nonspherical target shapes.
Three intracranial test targets were constructed using a 3D treatment planning system after a patient underwent CT simulation. The targets included an ellipsoid with major axis dimensions of 4.0, 2.0, and 2.0 cm, a hemisphere with a diameter of 4.0 cm, and an irregularly shaped patient tumor with a maximum dimension of 5.3 cm. The following stereotactic techniques were compared for each target: a) 5 arcs as used in traditional linac radiosurgery/radiotherapy (noncoplanar arcs [ARCS]), b) 6 fixed noncoplanar custom blocked fields (3D), c) intensity modulation using 6 noncoplanar beams and a mini-multileaf collimator (intensity-modulated radiation therapy [IMRTI). Dose volume histograms were performed for each target/technique combination.
For the ellipsoid, dose conformity is similar for all three techniques and normal brain isodose distributions are more favorable with the ARCS plan. For the hemisphere and irregular tumor targets, dose conformity and high/low isodose normal brain volumes are more favorable with the IMRT technique.
For the targets described above, the intensity-modulated technique results in improved dose conformity and decreased dose to nontarget brain in high and low isodose regions as compared to the standard noncoplanar arc technique or noncoplanar fixed fields for the hemisphere and tumor targets. Intensity-modulated treatment delivery may allow for an increase in the therapeutic ratio for treating stereotactically defined large and/or irregularly shaped intracranial targets.
基于直线加速器弧形的立体定向放射治疗越来越频繁地用于治疗脑肿瘤。这种方法可用于单次或分次治疗,通常使用圆形准直器,这对于小的球形靶区是最佳的。使用固定的非共面射束或调强射束进行治疗计划可能会增强适形于不规则形状和/或大肿瘤的能力,特别是当与立体定向定位相结合时。我们比较了三种立体定向技术对各种非球形靶区形状的剂量适形性和正常脑剂量特征。
在一名患者进行CT模拟后,使用三维治疗计划系统构建了三个颅内测试靶区。靶区包括一个长轴尺寸为4.0、2.0和2.0厘米的椭球体、一个直径为4.0厘米的半球体以及一个最大尺寸为5.3厘米的不规则形状的患者肿瘤。针对每个靶区比较了以下立体定向技术:a)传统直线加速器放射外科/放射治疗中使用的5个弧形(非共面弧形[ARCS]),b)6个固定的非共面定制遮挡野(3D),c)使用6个非共面射束和一个微型多叶准直器进行调强(调强放射治疗[IMRTI])。对每个靶区/技术组合进行剂量体积直方图分析。
对于椭球体,所有三种技术的剂量适形性相似,并且ARCS计划的正常脑等剂量分布更有利。对于半球体和不规则肿瘤靶区,IMRT技术的剂量适形性以及高/低等剂量正常脑体积更有利。
对于上述靶区,与标准的非共面弧形技术或半球体和肿瘤靶区的非共面固定野相比,调强技术在高、低等剂量区域导致更好的剂量适形性并降低了非靶区脑的剂量。调强治疗可能会提高治疗立体定向定义的大的和/或不规则形状的颅内靶区的治疗比。