Jortner J, Bixon M, Langenbacher T, Michel-Beyerle M E
School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12759-65. doi: 10.1073/pnas.95.22.12759.
We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)-bridge ([Bj])-acceptor (a) system, where [Bj] = B1,B2, . , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*[Bj]a --> d[Bj]a+/-, and (ii) multistep charge transport involves charge injection from d* (or d+) to [Bj], charge hopping within [Bj], and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence approximately exp(-betaR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime tau approximately Neta and yield Y approximately (1 + Neta)-1 exhibiting a weak (algebraic) N and distance dependence. The power parameter eta is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state dB1+/-B2 . BNa relative to the electronically excited donor doorway state dB1B2 . BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic-dynamic relations, in conjunction with the energetic data for d/d- and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for "chemistry at a distance" after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.
我们研究了DNA中的电荷迁移,提出了供体(d)-桥([Bj])-受体(a)系统中电荷分离的两种不同机制,其中[Bj]=B1、B2、...、BN是B-DNA的N个特定相邻碱基:(i)双中心单步超交换诱导电荷转移,d*[Bj]a→d[Bj]a+/-;(ii)多步电荷传输涉及从d*(或d+)到[Bj]的电荷注入、[Bj]内的电荷跳跃以及被a捕获的电荷。对于非共振耦合,机制i占主导,电荷分离速率和产率对d-a距离(R)呈现近似指数依赖exp(-βR)。共振耦合导致机制ii,电荷分离寿命τ≈Nη且产率Y≈(1 + Nη)-1呈现较弱的(代数)N和距离依赖性。功率参数η由电荷跳跃随机游走确定。电荷迁移机制的能量控制由离子对状态dB1+/-B2...BNa相对于电子激发供体门道状态dB1B2...BNa的能量学施加。通过超交换或跳跃实现电荷分离取决于桥内的碱基序列。我们的能量-动力学关系,结合d/d-和B/B+的能量数据,确定了不同空穴供体系统中两种不同机制的实现,确立了DNA中电荷传输后“远距离化学”的条件。通过桥的序列特异性实现的电荷迁移机制的能量控制对于大分子尺度系统、蛋白质和DNA是普遍适用的。