Woolley C S
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, 60208, USA.
Horm Behav. 1998 Oct;34(2):140-8. doi: 10.1006/hbeh.1998.1466.
Light and electron microscopic studies have shown that ovarian steroids regulate the density and number of excitatory synaptic inputs to hippocampal pyramidal cells in the adult female rat; elevated levels of estradiol are associated with a higher density of dendritic spine synapses on CA1 pyramidal cells. Electrophysiological analyses indicate that these hormone-induced synapses increase hippocampal excitability as well as the potential for synaptic plasticity. Importantly, correlation of dendritic spine density and sensitivity to synaptic input of individual CA1 pyramidal cells from estradiol-treated and control animals suggests that synapses induced by estradiol may be a specialized subpopulation that contains primarily the NMDA subtype of glutamate receptor. The apparent NMDA receptor specificity of these synapses may be key to understanding their functional significance. Currently, the behavioral consequences of additional spine synapses are unknown. Numerous studies have aimed at correlating hormone-induced changes in hippocampal connectivity with differences in hippocampus-dependent spatial learning ability in mazes, but the results of these efforts have been equivocal. Anatomical, electrophysiological, and behavioral studies of estradiol-mediated hippocampal plasticity are reviewed. In conclusion, it is suggested that standard behavioral tests of hippocampal function are not sufficient to reveal the behavioral consequences of hormone-induced hippocampal plasticity. Rather, understanding the behavioral consequences of estradiol and progesterone effects on hippocampal connectivity may require analysis of the hippocampus' cognitive and spatial information processing functions in relation to alternative biologically relevant behaviors. A (nonexclusive) proposal that hormone-induced hippocampal plasticity may facilitate appropriate prepartum/maternal behavior is discussed.
光学显微镜和电子显微镜研究表明,卵巢甾体激素可调节成年雌性大鼠海马锥体细胞兴奋性突触输入的密度和数量;雌二醇水平升高与CA1锥体细胞上树突棘突触的密度增加有关。电生理分析表明,这些激素诱导的突触可增加海马的兴奋性以及突触可塑性的潜力。重要的是,对来自经雌二醇处理的动物和对照动物的单个CA1锥体细胞的树突棘密度与突触输入敏感性的相关性分析表明,雌二醇诱导的突触可能是一个特殊的亚群,主要包含谷氨酸受体的NMDA亚型。这些突触明显的NMDA受体特异性可能是理解其功能意义的关键。目前,额外的脊柱突触的行为后果尚不清楚。许多研究旨在将激素诱导的海马连接变化与迷宫中依赖海马的空间学习能力差异联系起来,但这些努力的结果并不明确。本文综述了雌二醇介导的海马可塑性的解剖学、电生理学和行为学研究。总之,有人认为标准的海马功能行为测试不足以揭示激素诱导的海马可塑性的行为后果。相反,要了解雌二醇和孕酮对海马连接的影响的行为后果,可能需要分析海马与其他生物学相关行为有关的认知和空间信息处理功能。本文讨论了一个(非排他性的)提议,即激素诱导的海马可塑性可能促进适当的产前/母性行为。