Bioinformatics and Computational Biology Program, Worcester, Massachusetts.
Department of Biology and Biotechnology, Worcester, Massachusetts.
Biophys J. 2021 Aug 3;120(15):3192-3210. doi: 10.1016/j.bpj.2021.05.030. Epub 2021 Jun 29.
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
有丝分裂纺锤体的正确形成和维持是细胞有丝分裂忠实进行的必要条件。尽管已经有大量工作致力于了解有丝分裂纺锤体的关键分子成分的作用,但确定纺锤体中力扰动的后果仍然是一个挑战。我们开发了一个计算框架,考虑了有丝分裂进展的最小力要求。为了反映早期纺锤体的形成,我们对微管动力学和与主要力产生马达的相互作用进行建模,排除了在有丝分裂后期占主导地位的染色体相互作用。我们直接整合我们的实验数据来定义和验证模型。然后,我们使用模拟来分析随时间变化的单个力分量及其与纺锤体动力学的关系,使其有别于以前发表的模型。我们通过模型预测和生物学操作表明,不是达到并保持一个恒定的两极纺锤体长度,而是发生两极距离的波动,这与皮层动力蛋白的微管结合和力产生相吻合。我们的模型进一步预测,当驱动蛋白-14(HSET)活性也很高时,高动力蛋白活性对于纺锤体的两极性是必需的。据我们所知,我们的结果为皮层动力蛋白在调节纺锤体两极性中的作用提供了新的见解。