Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A
Unite de Biochimie Physiologique, Universite Catholique de Louvain, Louvain la Neuve, Belgium.
Microb Drug Resist. 1998 Fall;4(3):143-58. doi: 10.1089/mdr.1998.4.143.
Multidrug resistance (MDR) mediated by broad specificity transporters is one of the most important strategies used by pathogens, including cancer cells, to evade chemotherapy. In the yeast Saccharomyces cerevisiae, a complex pleiotropic drug resistance (PDR) network of genes involved in MDR is composed of the transcriptional regulators Pdr1p and Pdr3p, which activate expression of the ATP-binding cassette (ABC) MDR transporters-encoding genes PDR5, SNQ2, and YOR1 as well as other not yet identified genes. We have screened 349 toxic compounds in isogenic S. cerevisiae strains deleted of PDRS, SNQ2, or YOR1 in different combinations as well as both PDR1 and PDR3. The screen revealed extremely promiscuous, yet limited, and to a large extent overlapping but distinct drug resistance profiles of Pdr5p, Snq2p, and Yor1p. These ABC-MDR transporters mediated resistance to most currently available classes of clinically and agriculturally important fungicides and also to many antibiotics, herbicides, and others. Several classes of compounds were identified for the first time in the drug resistance spectrum of MDR transporters. These are fungicides, such as anilinopyrimidines, benzimidazoles, benzenedicarbonitriles, dithiocarbamates, guanidines, imidothiazoles, polyenes, pyrimidynyl carbinols, and strobilurine analogues; the urea derivative and anilide herbicides; flavonoids, several membrane lipids resembling detergents; and newly synthesized lysosomotropic aminoesters; as well as many others. Identification of compounds showing Pdr1p, Pdr3p-dependent, but Pdr5p-, Snq2p-, and Yor1p-independent toxicity, reflected in the case of rhodamine 6G, by efflux alterations, suggests the involvement of new drug resistance genes and is a first step toward their identification. The highly increased toxicity of bile acids toward the PDR1, PDR3 double disruptant together with the decreased level of BAT1 promoter dependent beta-galactosidase activity suggest that the Bat1p ABC transporter is a new member of the PDR network. Our results may contribute to a better understanding of the mechanism of MDR, in particular in the pathogenic yeast Candida albicans. They also provide and indication of the physiological function of MDR transporters and suggest new approaches for the cloning of the mammalian bile acid transporters.
由广谱特异性转运蛋白介导的多药耐药性(MDR)是包括癌细胞在内的病原体用于逃避化疗的最重要策略之一。在酿酒酵母中,参与多药耐药性的复杂多效性耐药(PDR)基因网络由转录调节因子Pdr1p和Pdr3p组成,它们激活编码ATP结合盒(ABC)多药耐药转运蛋白的基因PDR5、SNQ2和YOR1以及其他尚未确定的基因的表达。我们在不同组合缺失PDR5、SNQ2或YOR1以及同时缺失PDR1和PDR3的同基因酿酒酵母菌株中筛选了349种有毒化合物。筛选结果揭示了Pdr5p、Snq2p和Yor1p极其混杂但有限且在很大程度上重叠但又不同的耐药谱。这些ABC多药耐药转运蛋白介导了对目前临床上和农业上重要的大多数杀菌剂类别的耐药性,也介导了对许多抗生素、除草剂及其他物质的耐药性。在多药耐药转运蛋白的耐药谱中首次鉴定出几类化合物。这些化合物包括杀菌剂,如苯胺嘧啶类、苯并咪唑类、苯二腈类、二硫代氨基甲酸盐类、胍类、咪唑噻唑类、多烯类、嘧啶基甲醇类和甲氧基丙烯酸酯类类似物;尿素衍生物和酰胺类除草剂;黄酮类化合物、几种类似去污剂的膜脂;新合成的溶酶体促渗氨基酸酯;以及许多其他化合物。鉴定出显示Pdr1p、Pdr3p依赖性但Pdr5p、Snq2p和Yor1p非依赖性毒性的化合物,如罗丹明6G的情况,通过外排改变反映出来,这表明涉及新发现的耐药基因,是鉴定这些基因的第一步。胆汁酸对PDR1、PDR3双缺失突变体的毒性大幅增加,同时BAT1启动子依赖性β-半乳糖苷酶活性水平降低,这表明Bat1p ABC转运蛋白是PDR网络的一个新成员。我们的结果可能有助于更好地理解多药耐药性的机制,特别是在致病性白色念珠菌中。它们还提供了多药耐药转运蛋白生理功能的线索,并为克隆哺乳动物胆汁酸转运蛋白提出了新方法。