Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K
Department of Neuroanatomy, University of Heidelberg, D-69120 Heidelberg, Germany.
J Neurosci. 1998 Dec 1;18(23):9822-34. doi: 10.1523/JNEUROSCI.18-23-09822.1998.
Numerous studies have suggested that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic molecule. We show now on a variety of cultured neurons including peripheral autonomic, sensory, and CNS dopaminergic neurons that GDNF is not trophically active unless supplemented with TGF-beta. Immunoneutralization of endogenous TGF-beta provided by serum or TGF-beta-secreting cells, as e.g., neurons, in culture abolishes the neurotrophic effect of GDNF. The dose-response relationship required for the synergistic effect of GDNF and TGF-beta identifies 60 pg/ml of either factor combined with 2 ng/ml of the other factor as the EC50. GDNF/TGF-beta signaling employs activation of phosphatidylinositol-3 (PI-3) kinase as an intermediate step as shown by the effect of the specific PI-3 kinase inhibitor wortmannin. The synergistic action of GDNF and TGF-beta involves protection of glycosylphosphatidylinositol (GPI)-linked receptors as shown by the restoration of their trophic effects after phosphatidylinositol-specific phospholipase C-mediated hydrolysis of GPI-anchored GDNF family receptor alpha. The biological significance of the trophic synergism of GDNF and TGF-beta is underscored by colocalization of the receptors for TGF-beta and GDNF on all investigated GDNF-responsive neuron populations in vivo. Moreover, the in vivo relevance of the TGF-beta/GDNF synergism is highlighted by the co-storage of TGF-beta and GDNF in secretory vesicles of a model neuron, the chromaffin cell, and their activity-dependent release. Our results broaden the definition of a neurotrophic factor by incorporating the possibility that two factors that lack a neurotrophic activity when acting separately become neurotrophic when acting in concert. Moreover, our data may have a substantial impact on the treatment of neurodegenerative diseases.
大量研究表明,胶质细胞源性神经营养因子(GDNF)是一种强效神经营养分子。我们现在在多种培养的神经元上进行了研究,包括外周自主神经元、感觉神经元和中枢神经系统多巴胺能神经元,结果显示,除非补充转化生长因子-β(TGF-β),否则GDNF没有营养活性。对血清或培养中的分泌TGF-β的细胞(如神经元)提供的内源性TGF-β进行免疫中和,会消除GDNF的神经营养作用。GDNF和TGF-β协同作用所需的剂量反应关系确定,两种因子中任一因子60 pg/ml与另一因子2 ng/ml组合为半数有效浓度(EC50)。如特异性磷脂酰肌醇-3(PI-3)激酶抑制剂渥曼青霉素的作用所示,GDNF/TGF-β信号传导利用PI-3激酶的激活作为中间步骤。GDNF和TGF-β的协同作用涉及对糖基磷脂酰肌醇(GPI)连接受体的保护,这在磷脂酰肌醇特异性磷脂酶C介导的GPI锚定的GDNF家族受体α水解后其营养作用的恢复中得到体现。TGF-β和GDNF受体在体内所有研究的对GDNF有反应的神经元群体上共定位,突出了GDNF和TGF-β营养协同作用的生物学意义。此外,TGF-β和GDNF在模型神经元嗜铬细胞的分泌小泡中共储存及其活性依赖性释放,突出了TGF-β/GDNF协同作用在体内的相关性。我们的研究结果通过纳入这样一种可能性,即两种单独作用时缺乏神经营养活性的因子共同作用时会变成神经营养性的,从而拓宽了神经营养因子的定义。此外,我们的数据可能对神经退行性疾病的治疗产生重大影响。