Pearson D C, Gross E L
Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210 USA.
Biophys J. 1998 Dec;75(6):2698-711. doi: 10.1016/S0006-3495(98)77714-8.
The electrostatic interaction between plastocyanin (PC) and cytochrome f (cyt f), electron transfer partners in photosynthesis was studied using Brownian dynamics (BD) simulations. By using the software package MacroDox, which implements the BD algorithm of Northrup et al. (Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991-5998), we have modeled the interaction of the two proteins based on crystal structures of poplar PC and turnip cyt f at pH 7 and a variety of ionic strengths. We find that the electrostatic attraction between positively charged residues (K58, K65, K187, and R209, among others) on cyt f and negatively charged residues (E43, D44, E59, and E60, among others) on PC steers PC into a single dominant orientation with respect to cyt f, and furthermore, that the single dominant orientation that we observe is one that we had predicted in our previous work (Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64-76). This dominant orientation permits the formation of hydrophobic interactions, which are not implemented in the MacroDox algorithm. This proposed complex between PC and cyt f implicates H87, a copper ligand on PC, as the residue that accepts electrons from the heme on cyt f (and possibly through Y1 as we proposed previously). We argue for the existence of this single dominant complex on the basis of observations that the most favorable orientations of the interaction between PC and cyt f, as determined by grouping successful BD trajectories on the basis of closest contacts of charged residues, tend to overlap one another and have very close distances between the metal centers on the two proteins (copper on PC, iron on cyt f). We use this knowledge to develop a model for PC/cyt f interaction that places a reaction between the two proteins occurring when the copper-to-iron distance is between 16 and 17 A. This reaction distance gives a good estimate of the experimentally observed rate constant for PC-cyt f interaction. Analysis of BD results as a function of ionic strength predicts an interaction that happens less frequently and becomes less specific as ionic strength increases.
利用布朗动力学(BD)模拟研究了质体蓝素(PC)与细胞色素f(cyt f)(光合作用中的电子传递伙伴)之间的静电相互作用。通过使用实现了Northrup等人(Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991 - 5998)BD算法的MacroDox软件包,我们基于杨树PC和芜菁cyt f在pH 7及多种离子强度下的晶体结构,对这两种蛋白质的相互作用进行了建模。我们发现,cyt f上带正电的残基(如K58、K65、K187和R209等)与PC上带负电的残基(如E43、D44、E59和E60等)之间的静电吸引,使PC相对于cyt f进入一个单一的主导方向,此外,我们观察到的这个单一主导方向与我们之前工作(Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64 - 76)中预测的方向一致。这个主导方向允许形成疏水相互作用,而这在MacroDox算法中并未实现。所提出的PC与cyt f之间的复合物表明,PC上的铜配体H87是接受来自cyt f上血红素电子的残基(可能如我们之前所提出的通过Y1)。基于以下观察结果,我们认为存在这种单一主导复合物:根据带电残基的最紧密接触对成功的BD轨迹进行分组所确定的PC与cyt f之间相互作用的最有利方向往往相互重叠,并且两种蛋白质上的金属中心(PC上的铜,cyt f上的铁)之间的距离非常近。我们利用这一知识开发了一个PC/cyt f相互作用模型,该模型表明当铜到铁的距离在16至17埃之间时两种蛋白质之间会发生反应。这个反应距离很好地估计了实验观察到的PC - cyt f相互作用的速率常数。对BD结果作为离子强度函数的分析预测,随着离子强度增加,相互作用发生的频率降低且特异性降低。