Suppr超能文献

肠道细菌GlnK蛋白的生理作用:在氮限制条件下解除NifL抑制作用。

Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions.

作者信息

He L, Soupene E, Ninfa A, Kustu S

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.

出版信息

J Bacteriol. 1998 Dec;180(24):6661-7. doi: 10.1128/JB.180.24.6661-6667.1998.

Abstract

In Klebsiella pneumoniae, NifA-dependent transcription of nitrogen fixation (nif) genes is inhibited by a flavoprotein, NifL, in the presence of molecular oxygen and/or combined nitrogen. We recently demonstrated that the general nitrogen regulator NtrC is required to relieve NifL inhibition under nitrogen (N)-limiting conditions. We provide evidence that the sole basis for the NtrC requirement is its role as an activator of transcription for glnK, which encodes a PII-like allosteric effector. Relief of NifL inhibition is a unique physiological function for GlnK in that the structurally related GlnB protein of enteric bacteria-apparently a paralogue of GlnK-cannot substitute. Unexpectedly, although covalent modification of GlnK by uridylylation normally occurs under N-limiting conditions, several lines of evidence indicate that uridylylation is not required for relief of NifL inhibition. When GlnK was synthesized constitutively from non-NtrC-dependent promoters, it was able to relieve NifL inhibition in the absence of uridylyltransferase, the product of the glnD gene, and under N excess conditions. Moreover, an altered form of GlnK, GlnKY51N, which cannot be uridylylated due to the absence of the requisite tyrosine, was still able to relieve NifL inhibition.

摘要

在肺炎克雷伯菌中,固氮(nif)基因的NifA依赖性转录在存在分子氧和/或化合态氮的情况下会受到黄素蛋白NifL的抑制。我们最近证明,在氮(N)限制条件下,通用氮调节因子NtrC是解除NifL抑制所必需的。我们提供的证据表明,对NtrC需求的唯一基础是其作为glnK转录激活因子的作用,glnK编码一种PII样变构效应物。解除NifL抑制是GlnK独特的生理功能,因为肠道细菌中结构相关的GlnB蛋白(显然是GlnK的旁系同源物)无法替代它发挥作用。出乎意料的是,尽管在N限制条件下通常会发生尿苷酸化对GlnK的共价修饰,但有几条证据表明,解除NifL抑制并不需要尿苷酸化。当GlnK由非NtrC依赖性启动子组成型合成时,它能够在没有尿苷转移酶(glnD基因的产物)的情况下以及在N过量条件下解除NifL抑制。此外,由于缺少必需的酪氨酸而无法进行尿苷酸化的GlnK变体GlnKY51N,仍然能够解除NifL抑制。

相似文献

2
Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.
FEMS Microbiol Lett. 1999 Nov 15;180(2):263-70. doi: 10.1111/j.1574-6968.1999.tb08805.x.
4
NtrC is required for control of Klebsiella pneumoniae NifL activity.
J Bacteriol. 1997 Dec;179(23):7446-55. doi: 10.1128/jb.179.23.7446-7455.1997.
7
Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii.
J Bacteriol. 2002 Feb;184(3):812-20. doi: 10.1128/JB.184.3.812-820.2002.
8
Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation.
Microbiology (Reading). 2001 May;147(Pt 5):1267-1276. doi: 10.1099/00221287-147-5-1267.
9
Streptococcus mutans GlnK protein: an unusual PII family member.
Braz J Med Biol Res. 2011 May;44(5):394-401. doi: 10.1590/S0100-879X2011007500042. Epub 2011 Apr 1.
10
Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli.
Mol Microbiol. 1998 Jul;29(2):431-47. doi: 10.1046/j.1365-2958.1998.00932.x.

引用本文的文献

1
Molecular Origins of Transcriptional Heterogeneity in Diazotrophic Klebsiella oxytoca.
mSystems. 2022 Oct 26;7(5):e0059622. doi: 10.1128/msystems.00596-22. Epub 2022 Sep 8.
3
Resource Allocation During the Transition to Diazotrophy in .
Front Microbiol. 2021 Aug 9;12:718487. doi: 10.3389/fmicb.2021.718487. eCollection 2021.
4
Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit.
Biochem Soc Trans. 2019 Apr 30;47(2):603-614. doi: 10.1042/BST20180342. Epub 2019 Apr 1.
5
The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13270-4. doi: 10.1073/pnas.1108451108. Epub 2011 Jul 20.
6
8
9
Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum.
J Bacteriol. 2009 Sep;191(17):5526-37. doi: 10.1128/JB.00585-09. Epub 2009 Jun 19.

本文引用的文献

2
X-ray structure of the signal transduction protein from Escherichia coli at 1.9 A.
Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):93-104. doi: 10.1107/S0907444995007293.
3
Crystallization and preliminary X-ray diffraction studies of new crystal forms of Escherichia coli P(II) complexed with various ligands.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):738-42. doi: 10.1107/S0907444996003241.
4
Genetic regulatory mechanisms in the synthesis of proteins.
J Mol Biol. 1961 Jun;3:318-56. doi: 10.1016/s0022-2836(61)80072-7.
5
Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli.
Mol Microbiol. 1998 Jul;29(2):431-47. doi: 10.1046/j.1365-2958.1998.00932.x.
6
Characterization of the glnK-amtB operon of Azotobacter vinelandii.
J Bacteriol. 1998 Jun;180(12):3260-4. doi: 10.1128/JB.180.12.3260-3264.1998.
7
Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein.
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7030-4. doi: 10.1073/pnas.95.12.7030.
10
NtrC is required for control of Klebsiella pneumoniae NifL activity.
J Bacteriol. 1997 Dec;179(23):7446-55. doi: 10.1128/jb.179.23.7446-7455.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验