Proft M, Serrano R
Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022 Valencia, Spain.
Mol Cell Biol. 1999 Jan;19(1):537-46. doi: 10.1128/MCB.19.1.537.
The yeast ENA1/PMR2A gene encodes a cation extrusion ATPase in Saccharomyces cerevisiae which is essential for survival under salt stress conditions. One important mechanism of ENA1 transcriptional regulation is based on repression under normal growth conditions, which is relieved by either osmotic induction or glucose starvation. Analysis of the ENA1 promoter revealed a Mig1p-binding motif (-533 to -544) which was characterized as an upstream repressing sequence (URSMIG-ENA1) regulated by carbon source. Its function was abolished in a mig1 mig2 double-deletion strain as well as in either ssn6 or tup1 single mutants. A second URS at -502 to -513 is responsible for transcriptional repression regulated by osmotic stress and is similar to mammalian cyclic AMP response elements (CREs) that are recognized by CREB proteins. This URSCRE-ENA1 element requires for its repression function the yeast CREB homolog Sko1p (Acr1p) as well as the integrity of the Ssn6p-Tup1p corepressor complex. When targeted to the GAL1 promoter by fusing with the Gal4p DNA-binding domain, Sko1p acts as an Ssn6/Tup1p-dependent repressor regulated by osmotic stress. A glutathione S-transferase-Sko1 fusion protein binds specifically to the URSCRE-ENA1 element. Furthermore, a hog1 mitogen-activated protein kinase deletion strain could not counteract repression on URSCRE-ENA1 during osmotic shock. The loss of SKO1 completely restored ENA1 expression in a hog1 mutant and partially suppressed the osmotic stress sensitivity, qualifying Sko1p as a downstream effector of the HOG pathway. Our results indicate that different signalling pathways (HOG osmotic pathway and glucose repression pathway) use distinct promoter elements of ENA1 (URSCRE-ENA1 and URSMIG-ENA1) via specific transcriptional repressors (Sko1p and Mig1/2p) and via the general Ssn6p-Tup1p complex. The physiological importance of the relief from repression during salt stress was also demonstrated by the increased tolerance of sko1 or ssn6 mutants to Na+ or Li+ stress.
酵母ENA1/PMR2A基因在酿酒酵母中编码一种阳离子外排ATP酶,该酶在盐胁迫条件下对生存至关重要。ENA1转录调控的一个重要机制是基于正常生长条件下的抑制作用,这种抑制作用可通过渗透诱导或葡萄糖饥饿来解除。对ENA1启动子的分析揭示了一个Mig1p结合基序(-533至-544),其被表征为受碳源调控的上游抑制序列(URSMIG-ENA1)。其功能在mig1 mig2双缺失菌株以及ssn6或tup1单突变体中被消除。位于-502至-513的第二个URS负责由渗透胁迫调控的转录抑制,并且类似于由CREB蛋白识别的哺乳动物环磷酸腺苷反应元件(CRE)。这个URSCRE-ENA1元件的抑制功能需要酵母CREB同源物Sko1p(Acr1p)以及Ssn6p-Tup1p共抑制复合物的完整性。当通过与Gal4p DNA结合结构域融合靶向到GAL1启动子时,Sko1p作为受渗透胁迫调控的Ssn6/Tup1p依赖性阻遏物起作用。谷胱甘肽S-转移酶-Sko1融合蛋白特异性结合URSCRE-ENA1元件。此外,在渗透休克期间,hog1丝裂原活化蛋白激酶缺失菌株无法抵消对URSCRE-ENA1的抑制作用。SKO1的缺失在hog1突变体中完全恢复了ENA1的表达,并部分抑制了渗透胁迫敏感性,这使Sko1p成为HOG途径的下游效应物。我们的结果表明,不同的信号通路(HOG渗透通路和葡萄糖抑制通路)通过特定的转录抑制因子(Sko1p和Mig1/2p)以及通用的Ssn6p-Tup1p复合物使用ENA1的不同启动子元件(URSCRE-ENA1和URSMIG-ENA1)。sko1或ssn6突变体对Na+或Li+胁迫耐受性的增加也证明了盐胁迫期间抑制解除的生理重要性。