DeBose-Boyd R A, Nyame A K, Jasmer D P, Cummings R D
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
Glycoconj J. 1998 Aug;15(8):789-98. doi: 10.1023/a:1006912032273.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize alpha1,3-fucosylated GlcNAc and terminal beta-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal beta-Gal, and the glycoconjugates lack the Lewis x (Le(x)) antigen or other related fucose-containing antigens, such as sialylated Le(x), Le(a), Le(b) Le(y), or H-type 1. Direct assays of parasite extracts demonstrate the presence of an alpha1,3-fucosyltransferase (alpha1,3FT) and beta1,4-N-acetylgalactosaminyltransferase (beta1,4GalNAcT), but not beta1,4-galactosyltransferase. The H. contortus alpha1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galalpha1-->4GlcNAcbeta1-->3Galbeta1-->4Glc to form lacto-N-fucopentaose III Galbeta1-->4[Fuca1-->3]GlcNAc beta1-->3Galbeta1-4GIc, which contains the Le(x) antigen, and the acceptor lacdiNAc (LDN) GalNAcbeta1-->4GlcNAc to form GalNAc beta1-->4[Fualpha1-->3]GlcNAc. The alpha1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 microM and a Vmax of 10.8 nmol-mg(-1) h(-1). The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The alpha1,3FT acts best with type-2 glycan acceptors (Galbeta1-->4GlcNAcbeta1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus alpha1,3FT can synthesize the Le(x) antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.
反刍动物蠕虫寄生虫捻转血矛线虫(Haemonchus contortus)的糖蛋白能与四角豆凝集素(Lotus tetragonolobus agglutinin)和紫藤凝集素(Wisteria floribunda agglutinin)发生反应,这两种植物凝集素分别识别α1,3-岩藻糖基化的N-乙酰葡糖胺(GlcNAc)和末端β-N-乙酰半乳糖胺(β-GalNAc)残基。然而,寄生虫糖缀合物与蓖麻凝集素(Ricinus communis agglutinin)不发生反应,蓖麻凝集素可结合末端β-半乳糖(β-Gal),且糖缀合物缺乏Lewis x(Le(x))抗原或其他相关的含岩藻糖抗原,如唾液酸化Le(x)、Le(a)、Le(b)、Le(y)或H-1型。对寄生虫提取物的直接检测表明存在α1,3-岩藻糖基转移酶(α1,3-fucosyltransferase,α1,3FT)和β1,4-N-乙酰半乳糖胺基转移酶(β1,4-N-acetylgalactosaminyltransferase,β1,4GalNAcT),但不存在β1,4-半乳糖基转移酶。捻转血矛线虫α1,3FT可将乳糖-N-新四糖(lacto-N-neotetraose,LNnT)Galα1→4GlcNAcβ1→3Galβ1→4Glc中的GlcNAc残基岩藻糖基化,形成含有Le(x)抗原的乳糖-N-岩藻五糖III Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1-4Glc,还可将受体乳糖二糖胺(lacdiNAc,LDN)GalNAcβ1→4GlcNAc岩藻糖基化,形成GalNAcβ1→4[Fucα1→3]GlcNAc。α1,3FT对LNnT的活性依赖于时间、蛋白质和GDP-岩藻糖浓度,Km为50 μM,Vmax为10.8 nmol·mg⁻¹·h⁻¹。该酶对巯基修饰试剂N-乙基马来酰亚胺的抑制作用具有异常抗性。α1,3FT对2型聚糖受体(Galβ1→4GlcNAcβ1-R)作用最佳,并可使用唾液酸化和非唾液酸化的受体。因此,尽管在体外捻转血矛线虫α1,3FT可合成Le(x)抗原,但在体内该酶可能反而参与岩藻糖基化LDN或相关结构的合成,正如在其他蠕虫中所发现的那样。