Koles Z J, Soong A C
Department of Biomedical Engineering, University of Alberta, Edmonton, Canada.
Electroencephalogr Clin Neurophysiol. 1998 Nov;107(5):343-52. doi: 10.1016/s0013-4694(98)00084-4.
The spatio-temporal decomposition (STD) approach was used to localize the sources of simulated electroencephalograms (EEGs) to gain experience with the approach for analyzing real data.
The STD approach used is similar to the multiple signal classification method (MUSIC) in that it requires the signal subspace containing the sources of interest to be isolated in the EEG measurement space. It is different from MUSIC in that it allows more general methods of spatio-temporal decomposition to be used that may be better suited to the background EEG.
If the EEG data matrix is not corrupted by noise, the STD approach can be used to locate multiple dipole sources of the EEG one at a time without a priori knowledge of the number of active sources in the signal space. In addition, the common-spatial-patterns method of spatio-temporal decomposition is superior to the eigenvector decomposition for localizing activity that is ictal in nature.
The STD approach appears to be able to provide a means of localizing the equivalent dipole sources of realistic brain sources and that, even under difficult noise conditions and only 2 or 3 s of available EEG, the precision of the localization can be as low as a few mm.
采用时空分解(STD)方法对模拟脑电图(EEG)的源进行定位,以获取分析实际数据的方法经验。
所使用的STD方法与多重信号分类方法(MUSIC)类似,因为它需要在EEG测量空间中分离出包含感兴趣源的信号子空间。它与MUSIC的不同之处在于,它允许使用更通用的时空分解方法,这些方法可能更适合背景EEG。
如果EEG数据矩阵未被噪声破坏,则STD方法可用于一次定位EEG的多个偶极子源,而无需事先了解信号空间中活动源的数量。此外,对于定位本质上是发作期的活动,时空分解的共同空间模式方法优于特征向量分解。
STD方法似乎能够提供一种定位现实脑源等效偶极子源的方法,并且即使在困难的噪声条件下且仅有2或3秒的可用EEG,定位精度也可低至几毫米。