Suppr超能文献

自组织神经网络弥合了生物分子分辨率差距。

Self-organizing neural networks bridge the biomolecular resolution gap.

作者信息

Wriggers W, Milligan R A, Schulten K, McCammon J A

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0365, USA.

出版信息

J Mol Biol. 1998 Dec 18;284(5):1247-54. doi: 10.1006/jmbi.1998.2232.

Abstract

Topology-representing neural networks are employed to generate pseudo-atomic structures of large-scale protein assemblies by combining high-resolution data with volumetric data at lower resolution. As an application example, actin monomers and structural subdomains are located in a three-dimensional (3D) image reconstruction from electron micrographs. To test the reliability of the method, the resolution of the atomic model of an actin polymer is lowered to a level typically encountered in electron microscopic reconstructions. The atomic model is restored with a precision nine times the nominal resolution of the corresponding low-resolution density. The presented self-organizing computing method may be used as an information-processing tool for the synthesis of structural data from a variety of biophysical sources.

摘要

拓扑表示神经网络通过将高分辨率数据与低分辨率的体积数据相结合,用于生成大规模蛋白质组装体的伪原子结构。作为一个应用实例,肌动蛋白单体和结构亚结构域位于电子显微镜三维(3D)图像重建中。为了测试该方法的可靠性,将肌动蛋白聚合物原子模型的分辨率降低到电子显微镜重建中通常遇到的水平。原子模型以相应低分辨率密度标称分辨率九倍的精度恢复。所提出的自组织计算方法可作为一种信息处理工具,用于从各种生物物理源合成结构数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验