Stoner G D, Adams C, Kresty L A, Amin S G, Desai D, Hecht S S, Murphy S E, Morse M A
Division of Environmental Health Sciences, The Ohio State University School of Public Health and The Ohio State University Comprehensive Cancer Center, Ohio State University, CHRI, Columbus 43210, USA.
Carcinogenesis. 1998 Dec;19(12):2139-43. doi: 10.1093/carcin/19.12.2139.
The ability of dietary isothiocyanates to inhibit the esophageal metabolism of N'-nitrosonornicotine (NNN) was examined in F344 rats. Following feeding of benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), 3-phenylpropyl isothiocyanate (PPITC), 4-phenylbutyl isothiocyanate (PBITC) or 6-phenylhexyl isothiocyanate for 2 weeks, rats were killed and the esophagi were incubated in vitro with [5-3H]NNN. While dietary BITC, PEITC and PBITC all decreased NNN metabolism, dietary PPITC had the greatest effect, yielding inhibition ranging from 55 to 91% of the control production of various NNN metabolites. To determine the chemopreventive efficacy of PPITC on NNN-induced esophageal tumorigenesis, rats were fed AIN-76A diets containing 0, 1.0 or 2.5 micromol/g PPITC and were given untreated drinking water or drinking water containing 5 p.p.m. NNN. After 87 weeks, the experiment was terminated and the esophageal tumors were counted. Rats that were given untreated drinking water developed no tumors. Rats that were given 5 p.p.m. NNN and unadulterated AIN-76A diet had an esophageal tumor incidence of 71% and a multiplicity of 1.57 tumors/animal. The two dietary concentrations of PPITC reduced the incidence and multiplicity of NNN-induced esophageal tumors by >95%. These results demonstrate the remarkable chemopreventive efficacy of PPITC in the NNN-induced esophageal tumor model.