Suppr超能文献

多重比较程序已更新。

Multiple comparison procedures updated.

作者信息

Ludbrook J

机构信息

University of Melbourne Department of Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia.

出版信息

Clin Exp Pharmacol Physiol. 1998 Dec;25(12):1032-7. doi: 10.1111/j.1440-1681.1998.tb02179.x.

Abstract
  1. A common statistical flaw in articles submitted to or published in biomedical research journals is to test multiple null hypotheses that originate from the results of a single experiment without correcting for the inflated risk of type 1 error (false positive statistical inference) that results from this. Multiple comparison procedures (MCP) are designed to minimize this risk. The present review focuses on pairwise contrasts, the most common sort of multiple comparisons made by biomedical investigators. 2. In an earlier review a variety of MCP were described and evaluated. It was concluded that an effective MCP should control the risk of family-wise type 1 error, so as to ensure that not more than one hypothesis within a single family is falsely rejected. One-step procedures based on the Bonferroni or Sidák inequalities do this. For continuous data and under normal distribution theory, so does the Tukey-Kramer procedure for all possible pairwise contrasts of means and the Dunnett procedure for all possible pairwise contrasts of means with a control mean. 3. There is now a new class of MCP, based on the Bonferroni or Sidák inequalities but performed in a step-wise fashion. The members of this class have certain desirable properties. They: (i) control the family-wise type 1 error rate as effectively as the one-step procedures; (ii) are more powerful than the one-step Bonferroni or Sidák procedures, especially when hypotheses are logically related; and (iii) can be applied not only to continuous data but also to ordinal or categorical data. 4. Of the new step-wise MCP, Holm's step-down procedures are commended for their combination of accuracy, power and versatility. They also have the virtue of simplicity. Given the raw P values that result from conventional tests of significance, the adjustments for multiple comparisons can be made by hand or hand-held calculator. 5. Despite the corrective abilities of the new step-wise MCP, investigators should try to design their experiments and analyses to test a single, global hypothesis rather than multiple ones.
摘要
  1. 提交给生物医学研究期刊或在该类期刊上发表的文章中,一个常见的统计缺陷是检验多个零假设,这些零假设源自单个实验的结果,却未对由此产生的I类错误(假阳性统计推断)风险膨胀进行校正。多重比较程序(MCP)旨在将这种风险降至最低。本综述聚焦于两两对比,这是生物医学研究人员进行的最常见的多重比较类型。2. 在早期的一篇综述中,描述并评估了多种MCP。得出的结论是,有效的MCP应控制族系I类错误的风险,以确保在单个族系中不会有超过一个假设被错误地拒绝。基于邦费罗尼或西达克不等式的单步程序就能做到这一点。对于连续数据且在正态分布理论下,用于均值所有可能两两对比的图基 - 克雷默程序以及用于均值与对照均值所有可能两两对比的邓尼特程序也能做到。3. 现在有一类新的MCP,基于邦费罗尼或西达克不等式,但以逐步方式执行。这类方法具有某些理想的特性。它们:(i)与单步程序一样有效地控制族系I类错误率;(ii)比单步邦费罗尼或西达克程序更具效力,尤其是当假设在逻辑上相关时;(iii)不仅可应用于连续数据,还可应用于有序或分类数据。4. 在新的逐步MCP中,霍尔姆逐步递减程序因其准确性、效力和通用性的结合而受到称赞。它们还具有简单的优点。给定传统显著性检验得出的原始P值,多重比较的调整可以手动或使用手持计算器进行。5. 尽管新的逐步MCP具有校正能力,但研究人员应尝试设计他们的实验和分析,以检验单个全局假设而非多个假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验