Suppr超能文献

线粒体乳酸脱氢酶和乳酸氧化在细胞内乳酸穿梭中的作用。

Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.

作者信息

Brooks G A, Dubouchaud H, Brown M, Sicurello J P, Butz C E

机构信息

Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1129-34. doi: 10.1073/pnas.96.3.1129.

Abstract

To evaluate the potential role of mitochondrial lactate dehydrogenase (LDH) in tissue lactate clearance and oxidation in vivo, isolated rat liver, cardiac, and skeletal muscle mitochondria were incubated with lactate, pyruvate, glutamate, and succinate. As well, alpha-cyano-4-hydroxycinnamate (CINN), a known monocarboxylate transport inhibitor, and oxamate, a known LDH inhibitor were used. Mitochondria readily oxidized pyruvate and lactate, with similar state 3 and 4 respiratory rates, respiratory control (state 3/state 4), and ADP/O ratios. With lactate or pyruvate as substrates, alpha-cyano-4-hydroxycinnamate blocked the respiratory response to added ADP, but the block was bypassed by addition of glutamate (complex I-linked) and succinate (complex II-linked) substrates. Oxamate increased pyruvate (approximately 10-40%), but blocked lactate oxidation. Gel electrophoresis and electron microscopy indicated LDH isoenzyme distribution patterns to display tissue specificity, but the LDH isoenzyme patterns in isolated mitochondria were distinct from those in surrounding cell compartments. In heart, LDH-1 (H4) was concentrated in mitochondria whereas LDH-5 (M4) was present in both mitochondria and surrounding cytosol and organelles. LDH-5 predominated in liver but was more abundant in mitochondria than elsewhere. Because lactate exceeds cytosolic pyruvate concentration by an order of magnitude, we conclude that lactate is the predominant monocarboxylate oxidized by mitochondria in vivo. Mammalian liver and striated muscle mitochondria can oxidize exogenous lactate because of an internal LDH pool that facilitates lactate oxidation.

摘要

为了评估线粒体乳酸脱氢酶(LDH)在体内组织乳酸清除和氧化中的潜在作用,将分离的大鼠肝脏、心脏和骨骼肌线粒体与乳酸、丙酮酸、谷氨酸和琥珀酸一起孵育。此外,还使用了已知的单羧酸转运抑制剂α-氰基-4-羟基肉桂酸(CINN)和已知的LDH抑制剂草氨酸盐。线粒体很容易氧化丙酮酸和乳酸,其状态3和状态4的呼吸速率、呼吸控制(状态3/状态4)以及ADP/O比值相似。以乳酸或丙酮酸为底物时,α-氰基-4-羟基肉桂酸会阻断对添加ADP的呼吸反应,但添加谷氨酸(复合体I连接)和琥珀酸(复合体II连接)底物可绕过该阻断。草氨酸盐增加了丙酮酸(约10 - 40%),但阻断了乳酸氧化。凝胶电泳和电子显微镜显示LDH同工酶分布模式具有组织特异性,但分离线粒体中的LDH同工酶模式与周围细胞区室中的不同。在心脏中,LDH-1(H4)集中在线粒体中,而LDH-5(M4)存在于线粒体以及周围的细胞质和细胞器中。LDH-5在肝脏中占主导地位,但在线粒体中比其他地方更丰富。由于乳酸在细胞溶质中的浓度比丙酮酸高一个数量级,我们得出结论,乳酸是体内线粒体氧化的主要单羧酸。由于存在促进乳酸氧化的内部LDH库,哺乳动物肝脏和横纹肌线粒体能够氧化外源性乳酸。

相似文献

4
L-lactate oxidation by skeletal muscle mitochondria.骨骼肌线粒体对L-乳酸的氧化作用。
Int J Biochem. 1990;22(6):617-20. doi: 10.1016/0020-711x(90)90038-5.

引用本文的文献

6
The metabolic underpinnings of sebaceous lipogenesis.皮脂腺脂质生成的代谢基础。
Commun Biol. 2025 Apr 27;8(1):670. doi: 10.1038/s42003-025-08105-9.

本文引用的文献

1
The respiratory chain and oxidative phosphorylation.呼吸链与氧化磷酸化。
Adv Enzymol Relat Subj Biochem. 1956;17:65-134. doi: 10.1002/9780470122624.ch2.
2
Mammalian fuel utilization during sustained exercise.哺乳动物在持续运动期间的燃料利用情况。
Comp Biochem Physiol B Biochem Mol Biol. 1998 May;120(1):89-107. doi: 10.1016/s0305-0491(98)00025-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验