Prescott D M
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
Nucleic Acids Res. 1999 Mar 1;27(5):1243-50. doi: 10.1093/nar/27.5.1243.
Genes in the germline (micronuclear) genome of hypotrichous ciliates are interrupted by multiple, short, non-coding, AT-rich sequences called internal eliminated segments, or IESs. During conversion of a micronucleus to a somatic nucleus (macronucleus) after cell mating, all IESs are excised from the germline genes and the gene segments, called macronuclear-destined segments, or MDSs, are spliced. Excision of the approximately 150 000 IESs from a haploid germline genome in Oxytricha nova requires approximately 150 000 recombinant events. In three of 10 genes the MDSs are scrambled. During macronuclear development the MDSs are unscrambled, possibly by folding of the DNA to allow MDSs to ligate in the correct order. The nine MDSs in the actin I gene of O.nova are scrambled in the random order, 3-4-6-5-7-9-2-1-8, and MDS 2 is inverted. The 14 MDSs in the alphaTP gene of O.nova and Stylonychia mytilus are scrambled in the non-random order, 1-3-5-7-9-11-2-4-6-8-10-12-13-14. The 45 MDSs in the DNA pol alpha gene are non-randomly scrambled into an odd/even series, with an inversion of one-third of the gene. Additional IESs have been inserted into these three genes during evolution of Oxytricha trifallax, slightly modifying scrambling patterns. The non-random scrambled patterns in the alphaTP and DNA pol alpha genes are explained by multiple, simultaneous IES insertions. The randomly scrambled pattern in the actin I gene may arise from an initially non-randomly scrambled pattern by recombination among multiple IESs. Alternatively, IESs inserted sporadically (individually) in a non-scrambled configuration might subsequently recombine, converting a non-scrambled gene into a randomly scrambled one. IESs shift along a DNA molecule, most likely as a result of mutations at MDS/IES junctions. Shifting of IESs has the effect of 'transferring' nucleotides from one MDS to another, but does not change the overall sequence of nucleotides in the combined MDSs. In addition to shifting in position, IESs accumulate mutations at a high rate and increase and decrease in length within a species and during speciation. The phenomena of IESs and of MDS scrambling represent remarkable flexibility of the hypotrich genome, possibly reflecting a process of MDS shuffling that facilitates the evolution of genes.
寡毛纲纤毛虫的种系(微核)基因组中的基因被多个短的、非编码的、富含AT的序列打断,这些序列被称为内部消除片段(IESs)。在细胞交配后,微核转变为体核(大核)的过程中,所有IESs都从种系基因中切除,而那些被称为大核定向片段(MDSs)的基因片段则被拼接起来。从新奥 Trichomonas nova 的单倍体种系基因组中切除大约150000个IESs需要大约150000次重组事件。在10个基因中的3个基因里,MDSs是混乱排列的。在大核发育过程中,MDSs会被整理成有序排列,可能是通过DNA折叠使得MDSs能够以正确的顺序连接。新奥 Trichomonas nova 的肌动蛋白I基因中的9个MDSs以随机顺序混乱排列,即3-4-6-5-7-9-2-1-8,并且MDS 2是反向的。新奥 Trichomonas nova 和贻贝棘尾虫的αTP基因中的14个MDSs以非随机顺序混乱排列,即1-3-5-7-9-11-2-4-6-8-10-12-13-14。DNA聚合酶α基因中的45个MDSs被非随机地混乱排列成奇数/偶数系列,其中三分之一的基因发生了反向。在三裂新奥 Trichomonas trifallax 的进化过程中,额外的IESs插入到这三个基因中,略微改变了混乱排列模式。αTP和DNA聚合酶α基因中的非随机混乱排列模式可以通过多个IESs的同时插入来解释。肌动蛋白I基因中的随机混乱排列模式可能源于最初的非随机混乱排列模式,是由多个IESs之间的重组导致的。或者,以非混乱排列形式零星(单个)插入的IESs随后可能会重组,将一个非混乱排列的基因转变为随机混乱排列的基因。IESs沿着DNA分子移动,最有可能是由于MDS/IES连接处的突变。IESs的移动会将核苷酸从一个MDS“转移”到另一个MDS,但不会改变组合后的MDSs中核苷酸的总体序列。除了位置移动外,IESs在物种内和物种形成过程中以高频率积累突变,并且长度会增加和减少。IESs和MDS混乱排列的现象代表了寡毛纲基因组的显著灵活性,可能反映了一种有助于基因进化的MDS洗牌过程。