Suppr超能文献

Photophosphorylation as a function of illumination time. II. Effects of permeant buffers.

作者信息

Ort D R, Dilley R A, Good N E

出版信息

Biochim Biophys Acta. 1976 Oct 13;449(1):108-24. doi: 10.1016/0005-2728(76)90011-6.

Abstract

(1) The amounts of orthophosphate, bicarbonate and tris (hydroxymethyl)-aminomethane found inside the thylakoid are almost exactly the amounts predicted by assuming that the buffers equilibrate across the membrane. Since imidazole and pyridine delay the development of post-illumination ATP formation while increasing the maximum amount of ATP formed, it follows that such relatively permeant buffers must also enter the inner aqueous space of the thylakoid. (2) Photophosphorylation begins abruptly at full steady-state efficiency and full steady-state rate as soon as the illumination time exceeds about 5 ms when permeant ions are absent or as soon as the time exceeds about 50 ms if valinomycin and KC1 are present. In either case, permeant buffers have little or no effect on the time of illumination required to initiate phosphorylation. A concentration of bicarbonate which would delay acidification of the bulk of the inner aqueous phase for at least 350 ms has no effect at all on the time of initiation of phosphorylation. In somewhat swollen chloroplasts, the combined buffering by the tris(hydroxymethyl) aminomethane and orthophosphate inside would delay acidification of the inside by 1500 ms but, even in the presence of valinomycin and KC1, the total delay in the initiation of phosphorylation is then only 65 ms. Similar discrepancies occur with all of the other buffers mentioned. (3) Since these discrepancies between internal acidification and phosphorylation are found in the presence of saturating amounts of valinomycin and KC1, it seems that photophosphorylation can occur when there are no proton concentration gradients and no electrical potential differences across the membranes which separate the medium from the greater part of the internal aqueous phase. (4) We suggest that the protons produced by electron transport may be used directly for phosphorylation without even entering the bulk of the inner aqueous phase of the lamellar system. If so, phosphorylation could proceed long before the internal pH reflected the proton activity gradients within the membrane.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验