Suppr超能文献

“恰当”副法线ROC曲线:理论与最大似然估计

"Proper" Binormal ROC Curves: Theory and Maximum-Likelihood Estimation.

作者信息

Metz CE, Pan X

机构信息

The University of Chicago

出版信息

J Math Psychol. 1999 Mar;43(1):1-33. doi: 10.1006/jmps.1998.1218.

Abstract

The conventional binormal model, which assumes that a pair of latent normal decision-variable distributions underlies ROC data, has been used successfully for many years to fit smooth ROC curves. However, if the conventional binormal model is used for small data sets or ordinal-category data with poorly allocated category boundaries, a "hook" in the fitted ROC may be evident near the upper-right or lower-left corner of the unit square. To overcome this curve-fitting artifact, we developed a "proper" binormal model and a new algorithm for maximum-likelihood (ML) estimation of the corresponding ROC curves. Extensive simulation studies have shown the algorithm to be highly reliable. ML estimates of the proper and conventional binormal ROC curves are virtually identical when the conventional binormal ROC shows no "hook," but the proper binormal curves have monotonic slope for all data sets, including those for which the conventional model produces degenerate fits. Copyright 1999 Academic Press.

摘要

传统的副法线模型假定一对潜在的正态决策变量分布构成了ROC数据的基础,多年来一直成功用于拟合平滑的ROC曲线。然而,如果将传统的副法线模型用于小数据集或类别边界分配不佳的有序类别数据,在单位正方形的右上角或左下角附近,拟合的ROC中可能会出现一个“弯钩”。为了克服这种曲线拟合伪像,我们开发了一种“适当的”副法线模型以及一种用于相应ROC曲线最大似然(ML)估计的新算法。广泛的模拟研究表明该算法高度可靠。当传统的副法线ROC没有“弯钩”时,适当的和传统的副法线ROC曲线的ML估计实际上是相同的,但适当的副法线曲线对于所有数据集都具有单调斜率,包括那些传统模型产生退化拟合的数据集。版权所有1999年学术出版社。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验