Department of Radiology, MC 2026, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL 60637-1470, USA.
Acad Radiol. 2011 Dec;18(12):1537-48. doi: 10.1016/j.acra.2011.08.003.
Semiparametric methods provide smooth and continuous receiver operating characteristic (ROC) curve fits to ordinal test results and require only that the data follow some unknown monotonic transformation of the model's assumed distributions. The quantitative relationship between cutoff settings or individual test-result values on the data scale and points on the estimated ROC curve is lost in this procedure, however. To recover that relationship in a principled way, we propose a new algorithm for "proper" ROC curves and illustrate it by use of the proper binormal model.
Several authors have proposed the use of multinomial distributions to fit semiparametric ROC curves by maximum-likelihood estimation. The resulting approach requires nuisance parameters that specify interval probabilities associated with the data, which are used subsequently as a basis for estimating values of the curve parameters of primary interest. In the method described here, we employ those "nuisance" parameters to recover the relationship between any ordinal test-result scale and true-positive fraction, false-positive fraction, and likelihood ratio. Computer simulations based on the proper binormal model were used to evaluate our approach in estimating those relationships and to assess the coverage of its confidence intervals for realistically sized datasets.
In our simulations, the method reliably estimated simple relationships between test-result values and the several ROC quantities.
The proposed approach provides an effective and reliable semiparametric method with which to estimate the relationship between cutoff settings or individual test-result values and corresponding points on the ROC curve.
半参数方法为有序检验结果提供了平滑连续的接收者操作特征(ROC)曲线拟合,并且仅要求数据遵循模型假设分布的未知单调变换。然而,在这个过程中,数据尺度上的截止值设置或个别检验结果值与估计 ROC 曲线上的点之间的定量关系就会丢失。为了以一种有原则的方式恢复这种关系,我们提出了一种新的“适当”ROC 曲线的算法,并通过使用适当的双正态模型来说明它。
几位作者已经提出使用多项分布通过最大似然估计来拟合半参数 ROC 曲线。由此产生的方法需要指定与数据相关联的区间概率的“混杂”参数,随后将这些参数用作估计主要关注的曲线参数的值的基础。在本文描述的方法中,我们使用这些“混杂”参数来恢复任何有序检验结果尺度与真阳性分数、假阳性分数和似然比之间的关系。基于适当的双正态模型的计算机模拟用于评估我们的方法在估计这些关系方面的有效性,并评估其对实际大小数据集的置信区间的覆盖范围。
在我们的模拟中,该方法可靠地估计了检验结果值与几种 ROC 数量之间的简单关系。
所提出的方法提供了一种有效的、可靠的半参数方法,可以估计截止值设置或个别检验结果值与 ROC 曲线上相应点之间的关系。