Gonzalez R, Wu G
University of Michigan, Department of Psychology, Ann Arbor, 48109, USA.
Cogn Psychol. 1999 Feb;38(1):129-66. doi: 10.1006/cogp.1998.0710.
Empirical studies have shown that decision makers do not usually treat probabilities linearly. Instead, people tend to overweight small probabilities and underweight large probabilities. One way to model such distortions in decision making under risk is through a probability weighting function. We present a nonparametric estimation procedure for assessing the probability weighting function and value function at the level of the individual subject. The evidence in the domain of gains supports a two-parameter weighting function, where each parameter is given a psychological interpretation: one parameter measures how the decision maker discriminates probabilities, and the other parameter measures how attractive the decision maker views gambling. These findings are consistent with a growing body of empirical and theoretical work attempting to establish a psychological rationale for the probability weighting function.
实证研究表明,决策者通常不会以线性方式对待概率。相反,人们往往会高估小概率事件,而低估大概率事件。在风险决策中对这种扭曲进行建模的一种方法是通过概率加权函数。我们提出了一种非参数估计程序,用于在个体受试者层面评估概率加权函数和价值函数。收益领域的证据支持一种双参数加权函数,其中每个参数都有其心理学解释:一个参数衡量决策者区分概率的方式,另一个参数衡量决策者对赌博的看法有多有吸引力。这些发现与越来越多的实证和理论研究一致,这些研究试图为概率加权函数建立心理学依据。