Landis J R, Stanish W M, Freeman J L, Koch G G
Comput Programs Biomed. 1976 Dec;6(4):196-231. doi: 10.1016/0010-468x(76)90037-4.
GENCAT is a computer program which implements an extremely general methodology for the analysis of multivariate categorical data. This approach essentially involves the construction of test statistics for hypotheses involving functions of the observed proportions which are directed at the relationships under investigation and the estimation of corresponding model parameters via weighted least squares computations. Any compounded function of the observed proportions which can be formulated as a sequence of the following transformations of the data vector--linear, logarithmic, exponential, or the addition of a vector of constants--can be analyzed within this general framework. This algorithm produces minimum modified chi-square statistics which are obtained by partitioning the sums of squares as in ANOVA. The input data can be either: (a) frequencies from a multidimentional contingency table; (b) a victor of functions with its estimated covariance matrix; and (c) raw data in the form of integer-valued variables associated with each subject. The input format is completely flexible for the data as well as for the matrices.
GENCAT是一个计算机程序,它实现了一种极其通用的多变量分类数据分析方法。这种方法主要包括构建针对涉及观测比例函数的假设的检验统计量,这些函数针对所研究的关系,以及通过加权最小二乘法计算来估计相应的模型参数。任何可以表示为数据向量的以下变换序列(线性、对数、指数或添加常数向量)的观测比例的复合函数,都可以在这个通用框架内进行分析。该算法产生最小修正卡方统计量,这些统计量是通过像方差分析那样对平方和进行划分而得到的。输入数据可以是:(a) 多维列联表中的频数;(b) 带有其估计协方差矩阵的函数向量;以及 (c) 与每个对象相关联的整数值变量形式的原始数据。数据以及矩阵的输入格式完全灵活。