Suppr超能文献

基于特征的肌电信号人工神经网络分类

Feature-based classification of myoelectric signals using artificial neural networks.

作者信息

Gallant P J, Morin E L, Peppard L E

机构信息

Department of Electrical & Computer Engineering, Queen's University, Kingston, Ontario, Canada.

出版信息

Med Biol Eng Comput. 1998 Jul;36(4):485-9. doi: 10.1007/BF02523219.

Abstract

A pattern classification system, designed to separate myoelectric signal records based on contraction tasks, is described. The amplitude of the myoelectric signal during the first 200 ms following the onset of a contraction has a non-random structure that is specific to the task performed. This permits the application of advanced pattern recognition techniques to separate these signals. The pattern classification system described consists of a spectrographic preprocessor, a feature extraction stage and a classifier stage. The preprocessor creates a spectrogram by generating a series of power spectral densities over adjacent time segments of the input signal. The feature extraction stage reduces the dimensionality of the spectrogram by identifying features that correspond to subtle underlying structures in the input signal data. This is realised by a self-organising artificial neural network (ANN) that performs an advanced statistical analysis procedure known as exploratory projection pursuit. The extracted features are then classified by a supervised-learning ANN. An evaluation of the system, in terms of system performance and the complexity of the ANNs, is presented.

摘要

本文描述了一种模式分类系统,该系统旨在根据收缩任务对肌电信号记录进行分类。在收缩开始后的前200毫秒内,肌电信号的幅度具有非随机结构,该结构特定于所执行的任务。这允许应用先进的模式识别技术来分离这些信号。所描述的模式分类系统由一个频谱预处理器、一个特征提取阶段和一个分类器阶段组成。预处理器通过在输入信号的相邻时间段上生成一系列功率谱密度来创建频谱图。特征提取阶段通过识别与输入信号数据中细微的潜在结构相对应的特征来降低频谱图的维度。这是通过一个自组织人工神经网络(ANN)实现的,该网络执行一种称为探索性投影寻踪的先进统计分析程序。然后,通过一个监督学习的人工神经网络对提取的特征进行分类。本文还对该系统在系统性能和人工神经网络的复杂性方面进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验