Chapple I L, Landini G, Griffiths G S, Patel N C, Ward R S
Oral Diseases Research Group, University of Birmingham, School of Dentistry, UK.
J Periodontal Res. 1999 Feb;34(2):79-86. doi: 10.1111/j.1600-0765.1999.tb02226.x.
This paper reports the detailed calibration of the new Periotron 8000 with different fluids and uses the method of least squares to derive polynomial regression equations up to the 6th order, to investigate the most accurate descriptor of the resulting calibration lines. The use of a 4th order polynomial regression equation (recommended by the manufacturer) provided better coefficients of determination (R2: 0.999) and root mean square errors (RMSE = 1.6) than either linear regression (R2: 0.986, RMSE = 10.9) or quadratic models (R2: 0.998, RMSE = 3.2). Data derived using the manufacturer's MLCONVERT software program lacked accuracy and incurred large errors for volumes > 0.5 microliter. Calibrations performed on one day could be used with accuracy to derive volumes > 0.1 microliter collected on subsequent days, when using the same machine (s.d. for residuals plot = 2.49 Periotron units), but this was not the case for different machines (s.d. = 9.57 Periotron units). Varying serum protein concentration by up to 500% had a negligible effect on calculated volumes above 0.1 microliter. We conclude that the Periotron 8000 is at least as reliable a machine as the Periotron 6000, and that the calibration lines for both machines are best described using 4th order polynomial regression equations and "look-up" tables, rather than quadratic (Periotron 6000) or the manufacturer's software (Periotron 8000). Serum seems to be an acceptable GCF substitute for calibrations, which can be performed 1 day, and used on subsequent days for a given machine and for volumes above 0.1 microliter.
本文报告了使用不同液体对新型Periotron 8000进行的详细校准,并采用最小二乘法推导了高达6阶的多项式回归方程,以研究所得校准曲线的最准确描述符。与线性回归(R2:0.986,RMSE = 10.9)或二次模型(R2:0.998,RMSE = 3.2)相比,使用4阶多项式回归方程(制造商推荐)提供了更好的决定系数(R2:0.999)和均方根误差(RMSE = 1.6)。使用制造商的MLCONVERT软件程序得出的数据缺乏准确性,对于体积> 0.5微升时会产生较大误差。当使用同一台机器时,在一天进行的校准可准确用于推导后续几天收集的体积> 0.1微升的数据(残差图的标准差= 2.49 Periotron单位),但不同机器则不然(标准差= 9.57 Periotron单位)。血清蛋白浓度变化高达500%对计算出的体积> 0.1微升的影响可忽略不计。我们得出结论,Periotron 8000至少与Periotron 6000一样可靠,并且两台机器的校准曲线最好使用4阶多项式回归方程和“查找”表来描述,而不是二次方程(Periotron 6000)或制造商的软件(Periotron 8000)。血清似乎是校准的可接受的龈沟液替代物,校准可在一天进行,并在后续几天用于给定机器和体积> 0.1微升的情况。