Commans S, Böck A
Lehrstuhl für Mikrobiologie der Universität München, Germany.
FEMS Microbiol Rev. 1999 Jun;23(3):335-51. doi: 10.1111/j.1574-6976.1999.tb00403.x.
One of the recent discoveries in protein biosynthesis was the finding that selenocysteine, the 21st amino acid, is cotranslationally inserted into polypeptides under the direction of a UGA codon assisted by a specific structural signal in the mRNA. The key to selenocysteine biosynthesis and insertion is a special tRNA species, tRNA(Sec). The formation of selenocysteine from serine represents an interesting tRNA-mediated amino acid transformation. tRNA(Sec) (or the gene encoding it) has been found over all three domains of life. It displays a number of unique features that designate it a selenocysteine-inserting tRNA and differentiate it from canonical elongator tRNAs. Although there are still some uncertainties concerning the precise secondary and tertiary structures of eukaryal tRNA(Sec), the major identity determinant for selenocysteine biosynthesis and insertion appears to be the 13 bp long extended acceptor arm. In addition the core of the 3D structure of these tRNAs is different from that of class II tRNAs like tRNA(Sec). The biological implications of these structural differences still remain to be fully understood.
蛋白质生物合成领域最近的一项发现是,第21种氨基酸硒代半胱氨酸在mRNA中特定结构信号的协助下,由UGA密码子指导共翻译插入到多肽中。硒代半胱氨酸生物合成和插入的关键是一种特殊的tRNA,即tRNA(Sec)。由丝氨酸形成硒代半胱氨酸代表了一种有趣的tRNA介导的氨基酸转化。在生命的所有三个域中都发现了tRNA(Sec)(或编码它的基因)。它表现出许多独特的特征,使其成为一种插入硒代半胱氨酸的tRNA,并将其与典型的延伸tRNA区分开来。尽管关于真核生物tRNA(Sec)的确切二级和三级结构仍存在一些不确定性,但硒代半胱氨酸生物合成和插入的主要识别决定因素似乎是13个碱基对长的延伸受体臂。此外,这些tRNA的三维结构核心与tRNA(Sec)等II类tRNA不同。这些结构差异的生物学意义仍有待充分理解。