Department of Biology, University of West Georgia, Carrollton, Georgia, United States of America.
PLoS One. 2012;7(7):e41098. doi: 10.1371/journal.pone.0041098. Epub 2012 Jul 23.
The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).
鞭毛运动的反转(切换)是由鞭毛转子的开关复合物与产生扭矩的固定单元(或定子)之间的相互作用引起的。为了解释配体诱导的协同开关转换,现有的模型提出了转子亚基之间的变构相互作用,但没有涉及到刺激双向电机单元改变扭矩方向的反应的可能性。在鞭毛运动过程中,结合在停留部位的配体结合开关复合物可以激发一个电机单元。根据稳态旋转运动的转子的另一个开关复合物到达相同停留部位的概率,将由被激发的电机单元返回基态之前的独立激发态电机单元衰减率决定。在这里,我们推导出了鞭毛定子复合物的开关复合物与电机单元之间的能量耦合的解析表达式,并证明了该模型无需变构相互作用即可解释协同开关响应。当(1)转子的运动将随后的配体结合开关传递给被激发的电机单元,从而为被激发的电机单元提供了第二次保持激发的机会,以及(2)来自多个独立电机单元的输出被约束为单个全有或全无的事件时,模拟可以再现分析结果。在这个提出的模型中,一个电机单元和一个开关复合物代表了一个数学定义的信号转导机制的组成部分,其中能量耦合由稳态驱动,并由随机配体结合来调节。模型的数学推导表明,解析函数是 Hill 方程的一般形式(Hill AV (1910) 血红蛋白分子聚集对其离解曲线可能产生的影响。J Physiol 40: iv-vii)。