Suppr超能文献

埋藏结构水的结合增加了蛋白质的灵活性。

Binding of buried structural water increases the flexibility of proteins.

作者信息

Fischer S, Verma C S

机构信息

Computational and Structural Chemistry, Hoffmann-La Roche/Pharma Research, CH-4070 Basel, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9613-5. doi: 10.1073/pnas.96.17.9613.

Abstract

Water deeply buried in proteins is considered to be an integral part of the folded structure. Such structural water molecules make strong H bonds with polar groups of the surrounding protein and therefore are believed to tighten the protein matrix. Surprisingly, our computational analysis of the binding of a buried water molecule to bovine pancreatic trypsin inhibitor shows that the protein actually becomes more flexible, as revealed by an increase in the vibrational entropy. We find that this effect must be common in proteins, because the large entropic cost of immobilizing a single water molecule [-TDeltaS = 20.6 kcal/mol (1 kcal = 4.18 kJ) for the lost translational and rotational degrees of freedom] can only be partly compensated by water-protein interactions, even when they are nearly perfect, as in the case of bovine pancreatic trypsin inhibitor (DeltaE = -19.8 kcal/mol), leaving no room for a further decrease in entropy from protein tightening. This study illustrates the importance of considering changes in protein flexibility (which in this case favor binding by 3.5 kcal/mol) for the prediction of ligand binding affinities.

摘要

深埋于蛋白质内部的水被认为是折叠结构的一个组成部分。这种结构水分子与周围蛋白质的极性基团形成强氢键,因此被认为会使蛋白质基质更加紧密。令人惊讶的是,我们对一个埋藏水分子与牛胰蛋白酶抑制剂结合的计算分析表明,如振动熵增加所揭示的,蛋白质实际上变得更加灵活。我们发现这种效应在蛋白质中一定很常见,因为固定单个水分子的巨大熵成本[-TDeltaS = 20.6千卡/摩尔(1千卡 = 4.18千焦)用于失去的平动和转动自由度],即使在水-蛋白质相互作用近乎完美的情况下,如牛胰蛋白酶抑制剂(DeltaE = -19.8千卡/摩尔),也只能部分地由水-蛋白质相互作用补偿,没有空间因蛋白质收紧而使熵进一步降低。这项研究说明了在预测配体结合亲和力时考虑蛋白质灵活性变化(在这种情况下有利于结合3.5千卡/摩尔)的重要性。

相似文献

1
Binding of buried structural water increases the flexibility of proteins.
Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9613-5. doi: 10.1073/pnas.96.17.9613.
2
The solution structure of bovine pancreatic trypsin inhibitor at high pressure.
Protein Sci. 2003 Sep;12(9):1971-9. doi: 10.1110/ps.0242103.
3
High-resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence.
J Mol Biol. 2000 Feb 4;295(5):1237-49. doi: 10.1006/jmbi.1999.3445.
7
Rigidification of a flexible protease inhibitor variant upon binding to trypsin.
J Mol Biol. 2007 Feb 9;366(1):230-43. doi: 10.1016/j.jmb.2006.11.003. Epub 2006 Nov 7.
8
Using buried water molecules to explore the energy landscape of proteins.
Nat Struct Biol. 1996 Jun;3(6):505-9. doi: 10.1038/nsb0696-505.
10
Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water.
Biopolymers. 2001 Apr 5;58(4):359-73. doi: 10.1002/1097-0282(20010405)58:4<359::AID-BIP1013>3.0.CO;2-T.

引用本文的文献

1
Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations.
Chem Sci. 2024 Jul 15;15(32):12806-12818. doi: 10.1039/d4sc03645j. eCollection 2024 Aug 14.
2
Predicting Conserved Water Molecules in Binding Sites of Proteins Using Machine Learning Methods and Combining Features.
Comput Math Methods Med. 2022 Oct 3;2022:5104464. doi: 10.1155/2022/5104464. eCollection 2022.
4
Simulating Water Exchange to Buried Binding Sites.
J Chem Theory Comput. 2019 Apr 9;15(4):2684-2691. doi: 10.1021/acs.jctc.8b01284. Epub 2019 Mar 13.
5
Ion-specificity and surface water dynamics in protein solutions.
Phys Chem Chem Phys. 2018 Dec 12;20(48):30340-30350. doi: 10.1039/c8cp06061d.
6
Green Rust: The Simple Organizing 'Seed' of All Life?
Life (Basel). 2018 Aug 27;8(3):35. doi: 10.3390/life8030035.
7
Pickin' Up Good Vibrations.
Biophys J. 2017 Mar 14;112(5):829-830. doi: 10.1016/j.bpj.2017.01.008.
8
Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding.
BMC Bioinformatics. 2013;14 Suppl 16(Suppl 16):S11. doi: 10.1186/1471-2105-14-S16-S11. Epub 2013 Oct 22.
10
Water-protein interactions: the secret of protein dynamics.
ScientificWorldJournal. 2013 May 22;2013:138916. doi: 10.1155/2013/138916. Print 2013.

本文引用的文献

1
The entropic cost of bound water in crystals and biomolecules.
Science. 1994 Apr 29;264(5159):670. doi: 10.1126/science.264.5159.670.
4
Conformation of native, reduced and [5-55]Ala bovine pancreatic trypsin inhibitor in the gas phase.
Rapid Commun Mass Spectrom. 1998;12(1):40-4. doi: 10.1002/(SICI)1097-0231(19980115)12:1<40::AID-RCM108>3.0.CO;2-4.
5
Contribution of water molecules in the interior of a protein to the conformational stability.
J Mol Biol. 1997 Nov 21;274(1):132-42. doi: 10.1006/jmbi.1997.1365.
6
The influence of a protein on water dynamics in its vicinity investigated by molecular dynamics simulation.
Proteins. 1996 Jul;25(3):366-78. doi: 10.1002/(SICI)1097-0134(199607)25:3<366::AID-PROT8>3.0.CO;2-D.
7
Using buried water molecules to explore the energy landscape of proteins.
Nat Struct Biol. 1996 Jun;3(6):505-9. doi: 10.1038/nsb0696-505.
8
Computational methods to predict binding free energy in ligand-receptor complexes.
J Med Chem. 1995 Dec 22;38(26):4953-67. doi: 10.1021/jm00026a001.
9
The contribution of vibrational entropy to molecular association. The dimerization of insulin.
J Mol Biol. 1994 May 6;238(3):405-14. doi: 10.1006/jmbi.1994.1300.
10
Water: now you see it, now you don't.
Structure. 1993 Dec 15;1(4):223-6. doi: 10.1016/0969-2126(93)90011-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验