Suppr超能文献

从CT值推导低能光子的线性衰减系数。

Derivation of linear attenuation coefficients from CT numbers for low-energy photons.

作者信息

Watanabe Y

机构信息

Department of Radiation Oncology, Columbia University, New York, NY 10032, USA.

出版信息

Phys Med Biol. 1999 Sep;44(9):2201-11. doi: 10.1088/0031-9155/44/9/308.

Abstract

One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20 keV < or = E < or = 40 keV) for materials with high atomic numbers.

摘要

人们可以根据CT值估算光子衰减特性。在一种标准方法中,人们假定线性衰减系数与电子密度成正比,并忽略其对原子序数的非线性依赖。然而,当光子能量低于约50keV时,如在近距离放射治疗应用中,光电吸收和瑞利散射变得重要起来。因此,在估算线性衰减系数时必须明确考虑原子序数。在本研究中,我们提出一种从CT值更准确估算低能光子线性衰减系数的方法。我们构建了一个将CT值与电子密度及有效原子序数相关联的方程。我们使用CT校准体模来确定方程中的未知系数。然后针对给定的CT值求解该方程以得到有效原子序数,进而用其计算低能光子的线性衰减系数。我们使用CT体模来测试这种新方法。对于高原子序数材料,该方法在估算低光子能量(20keV≤E≤40keV)下的衰减系数时显著改进了标准方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验