Suppr超能文献

技术说明:关于双能 CT 应用中参数双参数光子截面模型的准确性。

Technical Note: On the accuracy of parametric two-parameter photon cross-section models in dual-energy CT applications.

机构信息

Medical Physics Graduate Program, Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA.

Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA.

出版信息

Med Phys. 2017 Jun;44(6):2438-2446. doi: 10.1002/mp.12220. Epub 2017 Apr 25.

Abstract

PURPOSE

To evaluate and compare the theoretically achievable accuracy of two families of two-parameter photon cross-section models: basis vector model (BVM) and modified parametric fit model (mPFM).

METHOD

The modified PFM assumes that photoelectric absorption and scattering cross-sections can be accurately represented by power functions in effective atomic number and/or energy plus the Klein-Nishina cross-section, along with empirical corrections that enforce exact prediction of elemental cross-sections. Two mPFM variants were investigated: the widely used Torikoshi model (tPFM) and a more complex "VCU" variant (vPFM). For 43 standard soft and bony tissues and phantom materials, all consisting of elements with atomic number less than 20 (except iodine), we evaluated the theoretically achievable accuracy of tPFM and vPFM for predicting linear attenuation, photoelectric absorption, and energy-absorption coefficients, and we compared it to a previously investigated separable, linear two-parameter model, BVM.

RESULTS

For an idealized dual-energy computed tomography (DECT) imaging scenario, the cross-section mapping process demonstrates that BVM more accurately predicts photon cross-sections of biological mixtures than either tPFM or vPFM. Maximum linear attenuation coefficient prediction errors were 15% and 5% for tPFM and BVM, respectively. The root-mean-square (RMS) prediction errors of total linear attenuation over the 20 keV to 1000 keV energy range of tPFM and BVM were 0.93% (tPFM) and 0.1% (BVM) for adipose tissue, 0.8% (tPFM) and 0.2% (BVM) for muscle tissue, and 1.6% (tPFM) and 0.2% (BVM) for cortical bone tissue. With exception of the thyroid and Teflon, the RMS error for photoelectric absorption and scattering coefficient was within 4% for the tPFM and 2% for the BVM. Neither model predicts the photon cross-sections of thyroid tissue accurately, exhibiting relative errors as large as 20%. For the energy-absorption coefficients prediction error, RMS errors for the BVM were less than 1.5%, while for the tPFM, the RMS errors were as large as 16%.

CONCLUSION

Compared to modified PFMs, BVM shows superior potential to support dual-energy CT cross-section mapping. In addition, the linear, separable BVM can be more efficiently deployed by iterative model-based DECT image-reconstruction algorithms.

摘要

目的

评估和比较两种双参数光子截面模型家族(基矢模型(BVM)和修正参数拟合模型(mPFM))的理论可达精度。

方法

修正的 PFM 假设光电吸收和散射截面可以通过有效原子数和/或能量的幂函数以及强制元素截面精确预测的经验修正来准确表示,外加 Klein-Nishina 截面。研究了两种 mPFM 变体:广泛使用的 Torikoshi 模型(tPFM)和更复杂的“VCU”变体(vPFM)。对于 43 种标准软组织和骨组织及模拟材料,所有材料均由原子数小于 20 的元素组成(碘除外),我们评估了 tPFM 和 vPFM 对预测线性衰减、光电吸收和能量吸收系数的理论可达精度,并与之前研究的可分离线性双参数模型 BVM 进行了比较。

结果

在理想的双能计算机断层扫描(DECT)成像场景中,截面映射过程表明 BVM 比 tPFM 或 vPFM 更能准确地预测生物混合物的光子截面。tPFM 和 BVM 的最大线性衰减系数预测误差分别为 15%和 5%。tPFM 和 BVM 在 20keV 至 1000keV 能量范围内的总线性衰减的均方根(RMS)预测误差分别为脂肪组织的 0.93%(tPFM)和 0.1%(BVM)、肌肉组织的 0.8%(tPFM)和 0.2%(BVM)以及皮质骨组织的 1.6%(tPFM)和 0.2%(BVM)。除甲状腺和特氟隆外,tPFM 和 BVM 的光电吸收和散射系数的 RMS 误差均在 4%以内。两个模型都不能准确预测甲状腺组织的光子截面,表现出高达 20%的相对误差。对于能量吸收系数的预测误差,BVM 的 RMS 误差小于 1.5%,而 tPFM 的 RMS 误差高达 16%。

结论

与修正的 PFMs 相比,BVM 具有更好的支持双能 CT 截面映射的潜力。此外,线性、可分离的 BVM 可以通过迭代基于模型的 DECT 图像重建算法更有效地部署。

相似文献

引用本文的文献

本文引用的文献

5
Ion range estimation by using dual energy computed tomography.利用双能量计算机断层扫描进行离子范围估计。
Z Med Phys. 2013 Dec;23(4):300-13. doi: 10.1016/j.zemedi.2013.03.001. Epub 2013 Apr 15.
7
Iterative reconstruction methods in X-ray CT.X 射线 CT 中的迭代重建方法。
Phys Med. 2012 Apr;28(2):94-108. doi: 10.1016/j.ejmp.2012.01.003. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验