Böhnke F, Arnold W
Department of Otolaryngology, Technical University of Munich, Germany.
ORL J Otorhinolaryngol Relat Spec. 1999 Sep-Oct;61(5):305-10. doi: 10.1159/000027688.
The propagation of acoustic waves in the inner ear in vivo could not be quantified completely yet. This is in particular true in conjunction with the micromechanical structures of the organ of Corti, though these data are important for the explanation and discussion of clinical measurements like otoacoustic emissions and auditory brainstem responses. To access these problems a three-dimensional mechanical model of the cochlea including the fluid-structure couplings is developed and evaluated numerically by finite elements. Although the complex cochlear partition is covered by passive mechanical elements, the results fit early experiments (1928), which studied the wave propagation in the cochlea with fresh human cadavers [G. von Békésy: Experiments in Hearing. New York, McGraw-Hill, 1960]. Additionally it is now easy to calculate the mechanical input impedance of the cochlea. These results agree with recent experiments [S.N. Merchant et al.: Hear Res 1996;97:30-45].
目前,尚无法完全量化声波在体内内耳中的传播情况。尤其是在涉及柯蒂氏器的微机械结构时更是如此,尽管这些数据对于解释和讨论诸如耳声发射和听觉脑干反应等临床测量结果非常重要。为了解决这些问题,我们开发了一个包含流体 - 结构耦合的耳蜗三维力学模型,并通过有限元法进行了数值评估。尽管复杂的耳蜗隔板由被动机械元件覆盖,但结果与早期实验(1928年)相符,早期实验使用新鲜人类尸体研究了耳蜗中的波传播情况[G.冯·贝凯西:《听觉实验》。纽约,麦格劳 - 希尔,1960年]。此外,现在很容易计算耳蜗的机械输入阻抗。这些结果与最近的实验结果一致[S.N. 默chant等人:《听觉研究》1996年;97:30 - 45]。