Suppr超能文献

可调节的GAL1启动子使Erg11p过表达,从而赋予酿酒酵母对氟康唑的抗性。

Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae.

作者信息

Kontoyiannis D P, Sagar N, Hirschi K D

机构信息

Department of Internal Medicine Specialties, Section of Infectious Diseases, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.

出版信息

Antimicrob Agents Chemother. 1999 Nov;43(11):2798-800. doi: 10.1128/AAC.43.11.2798.

Abstract

The contribution of the dosage of target enzyme P-450 14alpha-demethylase (14alphaDM) to fluconazole resistance in both Candida albicans and Saccharomyces cerevisiae remains unclear. Here, we show that overexpression of Saccharomyces P-450 14alphaDM in S. cerevisiae, under the control of the regulatable promoter GAL1, results in azole resistance.

摘要

目标酶P-450 14α-脱甲基酶(14αDM)的剂量对白色念珠菌和酿酒酵母中氟康唑耐药性的影响仍不清楚。在此,我们表明,在可调节启动子GAL1的控制下,酿酒酵母中酿酒酵母P-450 14αDM的过表达会导致唑类耐药。

相似文献

1
Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae.
Antimicrob Agents Chemother. 1999 Nov;43(11):2798-800. doi: 10.1128/AAC.43.11.2798.
3
Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem.
FEMS Microbiol Lett. 1999 Nov 15;180(2):171-5. doi: 10.1111/j.1574-6968.1999.tb08792.x.
6
Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans.
Microbiology (Reading). 1999 Oct;145 ( Pt 10):2715-25. doi: 10.1099/00221287-145-10-2715.
7
Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.
Antimicrob Agents Chemother. 2018 Feb 23;62(3). doi: 10.1128/AAC.02242-17. Print 2018 Mar.
9
Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans.
Microbiology (Reading). 1999 Oct;145 ( Pt 10):2701-2713. doi: 10.1099/00221287-145-10-2701.
10
Genetic analysis of azole resistance in the Darlington strain of Candida albicans.
Antimicrob Agents Chemother. 2000 Nov;44(11):2985-90. doi: 10.1128/AAC.44.11.2985-2990.2000.

引用本文的文献

1
The Impact of Dimitrios P. Kontoyiannis on Mucormycosis Research.
J Fungi (Basel). 2024 May 27;10(6):382. doi: 10.3390/jof10060382.
2
What 'Omics can tell us about antifungal adaptation.
FEMS Yeast Res. 2022 Jan 11;21(8). doi: 10.1093/femsyr/foab070.
4
Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS).
Chem Rev. 2021 May 12;121(9):5289-5335. doi: 10.1021/acs.chemrev.0c00983. Epub 2021 Apr 22.
5
Transcriptomic studies on Purpureocillium lilacinum reveal molecular mechanisms of response to fluconazole and itraconazole.
Braz J Microbiol. 2021 Jun;52(2):491-501. doi: 10.1007/s42770-021-00459-6. Epub 2021 Mar 2.
6
Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization.
Cell Mol Bioeng. 2019 Sep 24;12(5):511-528. doi: 10.1007/s12195-019-00598-9. eCollection 2019 Oct.
9
The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.
Virulence. 2016 Aug 17;7(6):649-59. doi: 10.1080/21505594.2016.1188236. Epub 2016 May 24.

本文引用的文献

2
Clinical, cellular, and molecular factors that contribute to antifungal drug resistance.
Clin Microbiol Rev. 1998 Apr;11(2):382-402. doi: 10.1128/CMR.11.2.382.
5
Molecular mechanisms of azole resistance in fungi.
FEMS Microbiol Lett. 1997 Apr 15;149(2):141-9. doi: 10.1111/j.1574-6968.1997.tb10321.x.
7
Molecular genetic analysis of azole antifungal mode of action.
Biochem Soc Trans. 1993 Nov;21(4):1034-8. doi: 10.1042/bst0211034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验