Piddock L J
Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, England.
Drugs. 1999;58 Suppl 2:11-8. doi: 10.2165/00003495-199958002-00003.
Fluoroquinolone resistance is mediated by target changes (DNA gyrase and/or topoisomerase IV) and/or decreased intracellular accumulation. The genes (gyrA/gyrB/parC/parE) and proteins of DNA topoisomerase IV show great similarity, both at the nucleotide and amino acid sequence level to those of DNA gyrase. It has been shown that there are hotspots, called the quinolone resistance determining region (QRDR), for mutations within gyrA and parC. Based on the Escherichia coli co-ordinates, the hotspots most favoured for giving rise to decreased susceptibility and/or full resistance to quinolones are at serine 83 and aspartate 87 of gyrA, and at serine 79 and aspartate 83 for parC. Few mutations in gyrB or parE/grlB of any bacteria have been described. Efflux of fluoroquinolones is the major cause of decreased accumulation of these agents; for Staphylococcus aureus, the efflux pump involved in norfloxacin resistance is NorA, and for Streptococcus pneumoniae, PmrA. By analysis of minimum inhibitory concentration (MIC) data derived in the presence and absence of the efflux inhibitor reserpine, it has been shown that up to 50% of ciprofloxacin-resistant clinical isolates of S. pneumoniae may possess enhanced efflux. This suggests that efflux may be an important mechanism of clinical resistance in this species. In Pseudomonas aeruginosa, several efflux operons have been demonstrated genetically and biochemically. These operons are encoded by mex (Multiple EffluX) genes: mexAmexB-oprM, mexCD-OprJ system and mexEF-oprN system. The E. coli efflux pump is the acrAB-tolC system. Both the mar operon and the sox operon can give rise to multiple antibiotic resistance. It has been shown that mutations giving rise to increased expression of the transcriptional activators marA and soxS affect the expression of a variety of different genes, including ompF and acrAB. The net result is that expression of OmpF is reduced and much less drug is able to enter the cell; expression of acrAB is increased, enhancing efflux from the cell.
氟喹诺酮耐药性是由靶点改变(DNA 回旋酶和/或拓扑异构酶 IV)和/或细胞内蓄积减少介导的。DNA 拓扑异构酶 IV 的基因(gyrA/gyrB/parC/parE)和蛋白质在核苷酸和氨基酸序列水平上与 DNA 回旋酶的基因和蛋白质具有高度相似性。已表明在 gyrA 和 parC 内存在称为喹诺酮耐药决定区(QRDR)的突变热点。根据大肠杆菌的坐标,最有利于产生对喹诺酮敏感性降低和/或完全耐药的热点位于 gyrA 的丝氨酸 83 和天冬氨酸 87,以及 parC 的丝氨酸 79 和天冬氨酸 83。几乎没有描述过任何细菌的 gyrB 或 parE/grlB 中的突变。氟喹诺酮的外排是这些药物蓄积减少的主要原因;对于金黄色葡萄球菌,参与诺氟沙星耐药的外排泵是 NorA,对于肺炎链球菌,是 PmrA。通过分析在有和没有外排抑制剂利血平存在的情况下获得的最低抑菌浓度(MIC)数据,已表明高达 50%的耐环丙沙星临床分离肺炎链球菌可能具有增强的外排。这表明外排在该菌种的临床耐药中可能是一个重要机制。在铜绿假单胞菌中,已通过遗传学和生物化学方法证明了几个外排操纵子。这些操纵子由 mex(多重外排)基因编码:mexAmexB-oprM、mexCD-OprJ 系统和 mexEF-oprN 系统。大肠杆菌的外排泵是 acrAB-tolC 系统。mar 操纵子和 sox 操纵子都可导致多重抗生素耐药。已表明导致转录激活因子 marA 和 soxS 表达增加的突变会影响多种不同基因的表达,包括 ompF 和 acrAB。最终结果是 OmpF 的表达降低,进入细胞的药物大大减少;acrAB 的表达增加,增强了从细胞中的外排。