Hooper D C
Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
Drugs. 1995;49 Suppl 2:10-5. doi: 10.2165/00003495-199500492-00004.
Physical studies have further defined interactions of quinolones with their principal target, DNA gyrase. The binding of quinolones to the DNA gyrase-DNA complex suggests 2 possible binding sites of differing affinities. Mutations in either the gyrase A gene (gyrA) or the gyrase B gene (gyrB) that affect quinolone susceptibility also affect drug binding, with resistance mutations causing decreased binding and hypersusceptibility mutations causing increased binding. Combinations of mutations in both GyrA and GyrB have further demonstrated the contribution of both subunits to the quinolone sensitivity of intact bacteria and purified DNA gyrase. A working model postulates initial binding of quinolones to proximate sites on GyrA and GyrB. This initial binding then produces conformational changes that expose additional binding sites, possibly involving DNA. Quinolones also inhibit the activities of Escherichia coli topoisomerase IV (encoded by the parC and parE genes), but at concentrations higher than those inhibiting DNA gyrase. The patterns of resistance mutations in gryA and parC suggest that topoisomerase IV may be a secondary drug target in E. coli and Neisseria gonorrhoeae. In contrast, in Staphylococcus aureus these patterns suggest that topoisomerase IV may be a primary target of quinolone action. Regulation of expression of membrane efflux transporters may contribute to quinolone susceptibility in both Gram-positive and Gram-negative bacteria. The substrate profile of the NorA efflux transporter of S. aureus correlates with the extent to which the activity of quinolone substrates is affected by overexpression of NorA. In addition, the Emr transporter of E. coli affects susceptibility to nalidixic acid, and the MexAB OprK transport system of Pseudomonas aeruginosa affects susceptibility to ciprofloxacin.(ABSTRACT TRUNCATED AT 250 WORDS)
物理学研究进一步明确了喹诺酮类药物与其主要靶点DNA旋转酶之间的相互作用。喹诺酮类药物与DNA旋转酶 - DNA复合物的结合表明存在两个亲和力不同的可能结合位点。影响喹诺酮敏感性的旋转酶A基因(gyrA)或旋转酶B基因(gyrB)中的突变也会影响药物结合,耐药性突变导致结合减少,超敏感性突变导致结合增加。GyrA和GyrB中突变的组合进一步证明了两个亚基对完整细菌和纯化的DNA旋转酶的喹诺酮敏感性的贡献。一个工作模型假设喹诺酮类药物最初结合到GyrA和GyrB上的邻近位点。这种初始结合随后产生构象变化,从而暴露出可能涉及DNA的额外结合位点。喹诺酮类药物也抑制大肠杆菌拓扑异构酶IV(由parC和parE基因编码)的活性,但所需浓度高于抑制DNA旋转酶的浓度。gryA和parC中的耐药性突变模式表明拓扑异构酶IV可能是大肠杆菌和淋病奈瑟菌中的次要药物靶点。相比之下,在金黄色葡萄球菌中,这些模式表明拓扑异构酶IV可能是喹诺酮类药物作用的主要靶点。膜外排转运蛋白表达的调节可能影响革兰氏阳性菌和革兰氏阴性菌对喹诺酮类药物的敏感性。金黄色葡萄球菌的NorA外排转运蛋白的底物谱与喹诺酮类底物活性受NorA过表达影响的程度相关。此外,大肠杆菌的Emr转运蛋白影响对萘啶酸的敏感性,铜绿假单胞菌的MexAB OprK转运系统影响对环丙沙星的敏感性。(摘要截短于250字)