Micera S, Sabatini A M, Dario P, Rossi B
Scuola Superiore Sant'Anna, Pisa, Italy.
Med Eng Phys. 1999 Jun;21(5):303-11. doi: 10.1016/s1350-4533(99)00055-7.
In this paper, a hybrid approach is presented for discriminating a few upper limb movements by processing the electromyographic (EMG) signals from selected shoulder muscles. Statistical techniques, such as the Generalized Likelihood Ratio test, the Principal Component Analysis, autoregressive parametric modeling techniques and cepstral analysis techniques, combined with a fuzzy logic based classifier (the Abe-Lan network) are used to construct low-dimensional feature spaces with high classification rates. The experimental results show the ability of the algorithm to correctly classify all the EMG patterns related to the selected planar arm pointing movements. Moreover, the structure presented offers promise for real-time applications because of the low computation costs of the overall algorithm.
本文提出了一种混合方法,通过处理来自选定肩部肌肉的肌电图(EMG)信号来区分几种上肢运动。统计技术,如广义似然比检验、主成分分析、自回归参数建模技术和倒谱分析技术,与基于模糊逻辑的分类器(Abe-Lan网络)相结合,用于构建具有高分类率的低维特征空间。实验结果表明该算法能够正确分类与选定平面手臂指向运动相关的所有EMG模式。此外,由于整个算法的计算成本较低,所提出的结构为实时应用提供了前景。