Suppr超能文献

用于肌电信号分析的混合软计算系统:综述

Hybrid soft computing systems for electromyographic signals analysis: a review.

作者信息

Xie Hong-Bo, Guo Tianruo, Bai Siwei, Dokos Socrates

机构信息

Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia.

出版信息

Biomed Eng Online. 2014 Feb 3;13:8. doi: 10.1186/1475-925X-13-8.

Abstract

Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

摘要

肌电图(EMG)是一种从人体骨骼肌采集的生物信号。EMG信号分析已被广泛用于检测人体运动意图、控制各种人机接口、诊断神经肌肉疾病以及对神经肌肉骨骼系统进行建模。随着人工智能和软计算的发展,已经提出了许多用于此目的的复杂技术。混合软计算系统(HSCS)是这些不同技术的集成,旨在进一步提高EMG分析的有效性、效率和准确性。本文综述并比较了用于EMG分析的神经网络、支持向量机、模糊逻辑、进化计算和群体智能的关键组合。我们还从基本软计算技术、这些技术的进一步组合及其在EMG分析中的其他应用方面,给出了关于HSCS在EMG分析中未来可能发展的建议。

相似文献

1
Hybrid soft computing systems for electromyographic signals analysis: a review.
Biomed Eng Online. 2014 Feb 3;13:8. doi: 10.1186/1475-925X-13-8.
2
Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal.
Med Biol Eng Comput. 2018 Dec;56(12):2259-2271. doi: 10.1007/s11517-018-1857-5. Epub 2018 Jun 18.
4
EMG signal decomposition: how can it be accomplished and used?
J Electromyogr Kinesiol. 2001 Jun;11(3):151-73. doi: 10.1016/s1050-6411(00)00050-x.
5
Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification.
Biomed Res Int. 2019 Oct 31;2019:9152506. doi: 10.1155/2019/9152506. eCollection 2019.
6
Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
J Med Syst. 2018 Apr 10;42(5):93. doi: 10.1007/s10916-018-0952-3.
7
Study on the methods of feature extraction based on electromyographic signal classification.
Med Biol Eng Comput. 2023 Jul;61(7):1773-1781. doi: 10.1007/s11517-023-02812-3. Epub 2023 Mar 10.
8
The role of soft computing in intelligent machines.
Philos Trans A Math Phys Eng Sci. 2003 Aug 15;361(1809):1749-80. doi: 10.1098/rsta.2003.1223.
9
Estimating EMG signals to drive neuromusculoskeletal models in cyclic rehabilitation movements.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:3611-4. doi: 10.1109/EMBC.2015.7319174.
10
EMG-based facial gesture recognition through versatile elliptic basis function neural network.
Biomed Eng Online. 2013 Jul 17;12:73. doi: 10.1186/1475-925X-12-73.

引用本文的文献

1
Deep learning-based framework for real-time upper limb motion intention classification using combined bio-signals.
Front Neurorobot. 2023 Jul 27;17:1174613. doi: 10.3389/fnbot.2023.1174613. eCollection 2023.
3
Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
Front Hum Neurosci. 2021 Jan 25;14:613254. doi: 10.3389/fnhum.2020.613254. eCollection 2020.
5
Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.
Front Neurorobot. 2017 Jul 24;11:35. doi: 10.3389/fnbot.2017.00035. eCollection 2017.
7
A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions.
Sensors (Basel). 2016 Aug 17;16(8):1304. doi: 10.3390/s16081304.
8
A novel approach for SEMG signal classification with adaptive local binary patterns.
Med Biol Eng Comput. 2016 Jul;54(7):1137-46. doi: 10.1007/s11517-015-1443-z. Epub 2015 Dec 31.

本文引用的文献

1
Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression.
Mol Med Rep. 2013 Sep;8(3):769-74. doi: 10.3892/mmr.2013.1598. Epub 2013 Jul 23.
2
RNA secondary structure prediction using soft computing.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):2-17. doi: 10.1109/TCBB.2012.159.
3
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Comput Biol Med. 2013 Jun;43(5):576-86. doi: 10.1016/j.compbiomed.2013.01.020. Epub 2013 Feb 27.
4
A neuro-fuzzy system for characterization of arm movements.
Sensors (Basel). 2013 Feb 21;13(2):2613-30. doi: 10.3390/s130202613.
5
SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine.
Med Biol Eng Comput. 2013 Apr;51(4):417-27. doi: 10.1007/s11517-012-1010-9. Epub 2012 Dec 6.
6
Iteratively Learning Electromyography (EMG)-based Functional Electrical Stimulation (FES) for Stroke Rehabilitation.
Biomed Tech (Berl). 2012 Sep 6;57 Suppl 1:/j/bmte.2012.57.issue-s1-O/bmt-2012-4328/bmt-2012-4328.xml. doi: 10.1515/bmt-2012-4328.
7
Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector machines.
Comput Biol Med. 2012 Aug;42(8):806-15. doi: 10.1016/j.compbiomed.2012.06.004. Epub 2012 Jul 2.
9
An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.
IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1064-71. doi: 10.1109/TSMCB.2012.2185843. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验