Suppr超能文献

门控差异解释了钠通道的亚型特异性利多卡因阻断作用。

Isoform-specific lidocaine block of sodium channels explained by differences in gating.

作者信息

Nuss H B, Kambouris N G, Marbán E, Tomaselli G F, Balser J R

机构信息

Section of Molecular and Cellular Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA.

出版信息

Biophys J. 2000 Jan;78(1):200-10. doi: 10.1016/S0006-3495(00)76585-4.

Abstract

When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.

摘要

当从典型的静息膜电位(V(rest)约为 -90 mV)去极化时,心脏钠(Na)电流比脑或骨骼肌的Na电流对局部麻醉药更敏感。当在非洲爪蟾卵母细胞中表达时,在接近V(rest)的膜电位下,利多卡因对hH1(人类心脏)Na电流的阻断作用大大超过了对mu1(大鼠骨骼肌)的阻断作用,而超极化至 -140 mV时两种亚型的阻断作用趋于相等。由于亚型特异性的强直阻断大致与通道可用性的无药物电压依赖性平行,快速失活的电压依赖性差异可能是阻断差异的基础。然而,在短暂(50 ms)的去极化脉冲后,尽管无药物恢复存在明显的动力学差异,但两种亚型从利多卡因阻断中的恢复情况相似,这表明快速失活的差异不能完全解释利多卡因作用的亚型差异。鉴于快速失活与其他与去极化相关的门控过程(激活、缓慢失活)之间存在强耦合,我们考虑了利多卡因阻断的亚型差异由这些其他门控过程的差异来解释的可能性。在来自HEK - 293细胞的全细胞记录中,hH1电流激活的电压依赖性比mu1约负20 mV。由于激活和关闭状态失活呈正相关,这些激活差异足以将hH1的可用性转移到更负的膜电位。具有增强的关闭状态失活门控的突变通道(mu1 - R1441C)表现出利多卡因敏感性增加,强调了关闭状态失活在利多卡因作用中的重要性。此外,当去极化延长至1 s时,hH1从具有中间动力学的“缓慢”失活状态(I(M))恢复的时间比mu1长四倍,并且hH1相对于mu1从利多卡因阻断中的恢复同样延迟。我们提出与快速失活相关的门控过程(激活和缓慢失活)是亚型特异性局部麻醉药作用的关键决定因素。

相似文献

引用本文的文献

本文引用的文献

8
Slow inactivation in human cardiac sodium channels.人类心脏钠通道中的缓慢失活
Biophys J. 1998 Jun;74(6):2945-52. doi: 10.1016/S0006-3495(98)78001-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验