Suppr超能文献

短杆菌肽与膜相互作用的连续介质溶剂模型计算:热力学方面

Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.

作者信息

Kessel A, Cafiso D S, Ben-Tal N

机构信息

Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.

出版信息

Biophys J. 2000 Feb;78(2):571-83. doi: 10.1016/S0006-3495(00)76617-3.

Abstract

Alamethicin is a 20-amino acid antibiotic peptide that forms voltage-gated ion channels in lipid bilayers. Here we report calculations of its association free energy with membranes. The calculations take into account the various free-energy terms that contribute to the transfer of the peptide from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the solvation free energy are calculated using continuum solvent models. The contributions from the lipid perturbation and membrane deformation effects and the entropy loss associated with peptide immobilization in the bilayer are estimated from a statistical thermodynamic model. The calculations were carried out using two classes of experimentally observed conformations, both of which are helical: the NMR and the x-ray crystal structures. Our calculations show that alamethicin is unlikely to partition into bilayers in any of the NMR conformations because they have uncompensated backbone hydrogen bonds and their association with the membrane involves a large electrostatic solvation free energy penalty. In contrast, the x-ray conformations provide enough backbone hydrogen bonds for the peptide to associate with bilayers. We tested numerous transmembrane and surface orientations of the peptide in bilayers, and our calculations indicate that the most favorable orientation is transmembrane, where the peptide protrudes approximately 4 A into the water-membrane interface, in very good agreement with electron paramagnetic resonance and oriented circular dichroism measurements. The calculations were carried out using two alamethicin isoforms: one with glutamine and the other with glutamate in the 18th position. The calculations indicate that the two isoforms have similar membrane orientations and that their insertion into the membrane is likely to involve a 2-A deformation of the bilayer, again, in good agreement with experimental data. The implications of the results for the biological function of alamethicin and its capacity to oligomerize and form ion channels are discussed.

摘要

短杆菌肽A是一种由20个氨基酸组成的抗生素肽,可在脂质双层中形成电压门控离子通道。在此,我们报告了其与膜的结合自由能的计算结果。这些计算考虑了有助于肽从水相转移到不同宽度双层膜中的各种自由能项。使用连续介质溶剂模型计算了溶剂化自由能的静电和非极性贡献。脂质扰动和膜变形效应的贡献以及与肽在双层膜中固定相关的熵损失是根据统计热力学模型估算的。计算使用了两类实验观察到的构象,二者均为螺旋构象:核磁共振(NMR)构象和X射线晶体结构。我们的计算表明,短杆菌肽A不太可能以任何NMR构象分配到双层膜中,因为它们具有未补偿的主链氢键,并且它们与膜的结合涉及较大的静电溶剂化自由能惩罚。相比之下,X射线构象为肽与双层膜结合提供了足够的主链氢键。我们测试了肽在双层膜中的多种跨膜和表面取向,我们的计算表明最有利的取向是跨膜取向,此时肽向水-膜界面突出约4埃,这与电子顺磁共振和取向圆二色性测量结果非常吻合。计算使用了两种短杆菌肽同工型:一种在第18位含有谷氨酰胺,另一种含有谷氨酸。计算表明这两种同工型具有相似的膜取向,并且它们插入膜中可能会使双层膜发生2埃的变形,这同样与实验数据吻合良好。文中讨论了这些结果对短杆菌肽A生物学功能及其寡聚化和形成离子通道能力的影响。

相似文献

1
Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.
Biophys J. 2000 Feb;78(2):571-83. doi: 10.1016/S0006-3495(00)76617-3.
2
Implicit solvent model estimates of the stability of model structures of the alamethicin channel.
Eur Biophys J. 2004 Feb;33(1):16-28. doi: 10.1007/s00249-003-0345-4. Epub 2003 Sep 17.
6
Mechanism of alamethicin insertion into lipid bilayers.
Biophys J. 1996 Nov;71(5):2669-79. doi: 10.1016/S0006-3495(96)79458-4.
9
Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
Biophys J. 2003 Dec;85(6):3431-44. doi: 10.1016/S0006-3495(03)74765-1.

引用本文的文献

1
Implicit model to capture electrostatic features of membrane environment.
PLoS Comput Biol. 2024 Jan 22;20(1):e1011296. doi: 10.1371/journal.pcbi.1011296. eCollection 2024 Jan.
2
Integral Representation of Electrostatic Interactions inside a Lipid Membrane.
Molecules. 2020 Aug 22;25(17):3824. doi: 10.3390/molecules25173824.
3
Effect of Membrane Composition on Receptor Association: Implications of Cancer Lipidomics on ErbB Receptors.
J Membr Biol. 2018 Jun;251(3):359-368. doi: 10.1007/s00232-018-0015-1. Epub 2018 Jan 19.
4
Computational studies of peptide-induced membrane pore formation.
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0219.
5
What Ion Flow along Ion Channels Can Tell us about Their Functional Activity.
Membranes (Basel). 2016 Dec 13;6(4):53. doi: 10.3390/membranes6040053.
6
A thermodynamic approach to alamethicin pore formation.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):98-105. doi: 10.1016/j.bbamem.2013.09.012. Epub 2013 Sep 23.
7
Dependence of Alamethicin Membrane Orientation on the Solution Concentration.
J Phys Chem C Nanomater Interfaces. 2013 Feb 21;117(7):3358-3365. doi: 10.1021/jp3099522. Epub 2013 Jan 24.
8
Monte Carlo simulations of peptide-membrane interactions with the MCPep web server.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W358-63. doi: 10.1093/nar/gks577. Epub 2012 Jun 13.
10
Protein folding in a reverse micelle environment: the role of confinement and dehydration.
J Chem Phys. 2011 Feb 7;134(5):055107. doi: 10.1063/1.3545982.

本文引用的文献

1
Lipid-alamethicin interactions influence alamethicin orientation.
Biophys J. 1991 Nov;60(5):1079-87. doi: 10.1016/S0006-3495(91)82144-0.
2
Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
Biophys J. 1999 Jun;76(6):3186-91. doi: 10.1016/S0006-3495(99)77470-9.
4
Molecular theory of lipid-protein interaction and the Lalpha-HII transition.
Biophys J. 1999 Feb;76(2):751-67. doi: 10.1016/S0006-3495(99)77241-3.
5
Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin.
J Mol Biol. 1999 Jan 29;285(4):1363-9. doi: 10.1006/jmbi.1998.2346.
6
Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
Biophys J. 1999 Jan;76(1 Pt 1):40-9. doi: 10.1016/S0006-3495(99)77176-6.
7
Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
Biophys J. 1998 Oct;75(4):1603-18. doi: 10.1016/S0006-3495(98)77604-0.
8
Effect of lipid characteristics on the structure of transmembrane proteins.
Biophys J. 1998 Sep;75(3):1410-4. doi: 10.1016/S0006-3495(98)74059-7.
9
Models and simulations of ion channels and related membrane proteins.
Curr Opin Struct Biol. 1998 Apr;8(2):237-44. doi: 10.1016/s0959-440x(98)80045-6.
10
Energetics of inclusion-induced bilayer deformations.
Biophys J. 1998 Apr;74(4):1966-83. doi: 10.1016/S0006-3495(98)77904-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验