Hollister S J, Levy R A, Chu T M, Halloran J W, Feinberg S E
Department of Biomedical Engineering, Sugery (Orthopaedics) and Mechanical Engineering and Applied Mechanics, The Unviersity of Michigan, Ann Arbor, USA.
Int J Oral Maxillofac Surg. 2000 Feb;29(1):67-71. doi: 10.1034/j.1399-0020.2000.290115.x.
Bone tissue engineering (BTE), which combines biomaterial scaffolds with biologically active factors, holds tremendous promise for reconstructing craniofacial defects. A significant challenge in craniofacial reconstructive BTE applications is the complex patient-specific geometry that must be reconstructed. In this paper, we present an image-based approach for designing and manufacturing patient-specific craniofacial biomaterial scaffolds directly from CT or MRI data. In this approach, voxel density distribution is used to define scaffold topology. The scaffold design topology is created using image processing techniques. This voxel density distribution is then converted to data that can be used to drive a Solid Free-Form Fabrication machine to either directly build the scaffold or build a mold for the scaffold. Several preliminary applications for craniofacial surgery, including a mandibular condyle scaffold, an orbital floor scaffold, and a general mandibular defect scaffold, are illustrated. Finally, we show applications to in vivo models.
骨组织工程(BTE)将生物材料支架与生物活性因子相结合,在重建颅面缺损方面具有巨大潜力。颅面重建BTE应用中的一个重大挑战是必须重建复杂的患者特异性几何形状。在本文中,我们提出了一种基于图像的方法,可直接从CT或MRI数据设计和制造患者特异性颅面生物材料支架。在这种方法中,体素密度分布用于定义支架拓扑结构。使用图像处理技术创建支架设计拓扑结构。然后将这种体素密度分布转换为可用于驱动实体自由成型制造机器的数据,以直接构建支架或制造支架模具。文中展示了几种颅面外科的初步应用,包括下颌髁突支架、眶底支架和一般下颌骨缺损支架。最后,我们展示了在体内模型中的应用。