Suppr超能文献

采用非线性确定性和随机方法的脑电图分析:一种联合策略。

EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy.

作者信息

Fell J, Kaplan A, Darkhovsky B, Röschke J

机构信息

Department of Psychiatry, University of Mainz, Germany.

出版信息

Acta Neurobiol Exp (Wars). 2000;60(1):87-108. doi: 10.55782/ane-2000-1328.

Abstract

We describe nonlinear deterministic versus stochastic methodology, their applications to EEG research and the neurophysiological background underlying both approaches. Nonlinear methods are based on the concept of attractors in phase space. This concept on the one hand incorporates the idea of an autonomous (stationary) system, on the other hand implicates the investigation of a long time evolution. It is an unresolved problem in nonlinear EEG research that nonlinear methods per se give no feedback about the stationarity aspect. Hence, we introduce a combined strategy utilizing both stochastic and nonlinear deterministic methods. We propose, in a first step to segment the EEG time series into piecewise quasi-stationary epochs by means of nonparametric change point analysis. Subsequently, nonlinear measures can be estimated with higher confidence for the segmented epochs fulfilling the stationarity condition.

摘要

我们描述了非线性确定性方法与随机方法、它们在脑电图(EEG)研究中的应用以及这两种方法背后的神经生理学背景。非线性方法基于相空间中吸引子的概念。这一概念一方面包含了自治(平稳)系统的思想,另一方面意味着对长时间演化的研究。在非线性脑电图研究中,一个尚未解决的问题是,非线性方法本身无法提供关于平稳性方面的反馈。因此,我们引入了一种结合随机方法和非线性确定性方法的联合策略。我们建议,第一步通过非参数变化点分析将脑电图时间序列分割成逐段准平稳时段。随后,对于满足平稳性条件的分割时段,可以更有信心地估计非线性度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验