Fell J, Kaplan A, Darkhovsky B, Röschke J
Department of Psychiatry, University of Mainz, Germany.
Acta Neurobiol Exp (Wars). 2000;60(1):87-108. doi: 10.55782/ane-2000-1328.
We describe nonlinear deterministic versus stochastic methodology, their applications to EEG research and the neurophysiological background underlying both approaches. Nonlinear methods are based on the concept of attractors in phase space. This concept on the one hand incorporates the idea of an autonomous (stationary) system, on the other hand implicates the investigation of a long time evolution. It is an unresolved problem in nonlinear EEG research that nonlinear methods per se give no feedback about the stationarity aspect. Hence, we introduce a combined strategy utilizing both stochastic and nonlinear deterministic methods. We propose, in a first step to segment the EEG time series into piecewise quasi-stationary epochs by means of nonparametric change point analysis. Subsequently, nonlinear measures can be estimated with higher confidence for the segmented epochs fulfilling the stationarity condition.
我们描述了非线性确定性方法与随机方法、它们在脑电图(EEG)研究中的应用以及这两种方法背后的神经生理学背景。非线性方法基于相空间中吸引子的概念。这一概念一方面包含了自治(平稳)系统的思想,另一方面意味着对长时间演化的研究。在非线性脑电图研究中,一个尚未解决的问题是,非线性方法本身无法提供关于平稳性方面的反馈。因此,我们引入了一种结合随机方法和非线性确定性方法的联合策略。我们建议,第一步通过非参数变化点分析将脑电图时间序列分割成逐段准平稳时段。随后,对于满足平稳性条件的分割时段,可以更有信心地估计非线性度量。