Suppr超能文献

用于推断生物网络定性模型的算法。

Algorithms for inferring qualitative models of biological networks.

作者信息

Akutsu T, Miyano S, Kuhara S

机构信息

Human Genome Center, University of Tokyo, Japan.

出版信息

Pac Symp Biocomput. 2000:293-304. doi: 10.1142/9789814447331_0028.

Abstract

Modeling genetic networks and metabolic networks is an important topic in bioinformatics. We propose a qualitative network model which is a combination of the Boolean network and qualitative reasoning, where qualitative reasoning is a kind of reasoning method well-studied in Artificial Intelligence. We also present algorithms for inferring qualitative networks from time series data and an algorithm for inferring S-systems (synergistic and saturable systems) from time series data, where S-systems are based on a particular kind of nonlinear differential equation and have been applied to the analysis of various biological systems.

摘要

对遗传网络和代谢网络进行建模是生物信息学中的一个重要课题。我们提出了一种定性网络模型,它是布尔网络和定性推理的结合,而定性推理是人工智能中一种经过充分研究的推理方法。我们还给出了从时间序列数据推断定性网络的算法,以及从时间序列数据推断S-系统(协同和饱和系统)的算法,其中S-系统基于一种特定类型的非线性微分方程,并已应用于各种生物系统的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验