Suppr超能文献

酿酒酵母中丙酮酸脱氢酶旁路的工程改造:胞质Mg(2+)和线粒体K(+)乙醛脱氢酶Ald6p和Ald4p在酒精发酵过程中乙酸形成中的作用。

Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation.

作者信息

Remize F, Andrieu E, Dequin S

机构信息

Laboratoire de Microbiologie et Technologie des Fermentations, INRA-IPV, F-34060 Montpellier Cedex 2, France.

出版信息

Appl Environ Microbiol. 2000 Aug;66(8):3151-9. doi: 10.1128/AEM.66.8.3151-3159.2000.

Abstract

Acetic acid plays a crucial role in the organoleptic balance of many fermented products. We have investigated the factors controlling the production of acetate by Saccharomyces cerevisiae during alcoholic fermentation by metabolic engineering of the enzymatic steps involved in its formation and its utilization. The impact of reduced pyruvate decarboxylase (PDC), limited acetaldehyde dehydrogenase (ACDH), or increased acetoacetyl coenzyme A synthetase (ACS) levels in a strain derived from a wine yeast strain was studied during alcoholic fermentation. In the strain with the PDC1 gene deleted exhibiting 25% of the PDC activity of the wild type, no significant differences were observed in the acetate yield or in the amounts of secondary metabolites formed. A strain overexpressing ACS2 and displaying a four- to sevenfold increase in ACS activity did not produce reduced acetate levels. In contrast, strains with one or two disrupted copies of ALD6, encoding the cytosolic Mg(2+)-activated NADP-dependent ACDH and exhibiting 60 and 30% of wild-type ACDH activity, showed a substantial decrease in acetate yield (the acetate production was 75 and 40% of wild-type production, respectively). This decrease was associated with a rerouting of carbon flux towards the formation of glycerol, succinate, and butanediol. The deletion of ALD4, encoding the mitochondrial K(+)-activated NAD(P)-linked ACDH, had no effect on the amount of acetate formed. In contrast, a strain lacking both Ald6p and Ald4p exhibited a long delay in growth and acetate production, suggesting that Ald4p can partially replace the Ald6p isoform. Moreover, the ald6 ald4 double mutant was still able to ferment large amounts of sugar and to produce acetate, suggesting the contribution of another member(s) of the ALD family.

摘要

乙酸在许多发酵产品的感官平衡中起着至关重要的作用。我们通过对参与乙酸形成和利用的酶促步骤进行代谢工程,研究了酒精发酵过程中控制酿酒酵母乙酸产生的因素。在源自葡萄酒酵母菌株的一个菌株中,研究了丙酮酸脱羧酶(PDC)活性降低、乙醛脱氢酶(ACDH)受限或乙酰乙酰辅酶A合成酶(ACS)水平升高对酒精发酵过程的影响。在缺失PDC1基因且PDC活性仅为野生型25%的菌株中,乙酸产量或次级代谢产物的生成量均未观察到显著差异。一个过表达ACS2且ACS活性提高了4至7倍的菌株,其乙酸水平并未降低。相比之下,编码胞质Mg(2+)激活的NADP依赖性ACDH的ALD6基因有一个或两个缺失拷贝、ACDH活性分别为野生型60%和30%的菌株,乙酸产量大幅下降(乙酸产量分别为野生型产量的75%和40%)。这种下降与碳通量重新导向甘油、琥珀酸和丁二醇的形成有关。编码线粒体K(+)激活的NAD(P)连接的ACDH的ALD4基因缺失,对乙酸生成量没有影响。相反,一个同时缺失Ald6p和Ald4p的菌株在生长和乙酸产生方面出现了长时间延迟,这表明Ald4p可以部分替代Ald6p同工型。此外,ald6 ald4双突变体仍然能够发酵大量糖类并产生乙酸,这表明ALD家族的其他成员也有贡献。

相似文献

3
The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae.
PLoS One. 2012;7(12):e51551. doi: 10.1371/journal.pone.0051551. Epub 2012 Dec 11.
4
Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
Appl Environ Microbiol. 1989 Feb;55(2):468-77. doi: 10.1128/aem.55.2.468-477.1989.
6
Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
Appl Environ Microbiol. 2006 Jul;72(7):4688-94. doi: 10.1128/AEM.02975-05.
7
The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase.
Yeast. 1997 Nov;13(14):1319-27. doi: 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T.
8
Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae.
Eur J Biochem. 2001 Oct;268(19):5057-65. doi: 10.1046/j.1432-1033.2001.02418.x.
9
Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.
FEMS Yeast Res. 2013 Aug;13(5):485-94. doi: 10.1111/1567-1364.12053. Epub 2013 Jun 13.
10
Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
Biotechnol Bioeng. 2016 Dec;113(12):2587-2596. doi: 10.1002/bit.26021. Epub 2016 Sep 21.

引用本文的文献

4
The Metabolism of Respiring Carbon Sources by Dekkera bruxellensis and Its Relation with the Production of Acetate.
Appl Biochem Biotechnol. 2023 Oct;195(10):6369-6391. doi: 10.1007/s12010-023-04398-w. Epub 2023 Mar 3.
6
Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts.
Front Microbiol. 2022 May 23;13:823581. doi: 10.3389/fmicb.2022.823581. eCollection 2022.
7
Pareto optimal metabolic engineering for the growth-coupled overproduction of sustainable chemicals.
Biotechnol Bioeng. 2022 Jul;119(7):1890-1902. doi: 10.1002/bit.28103. Epub 2022 Apr 21.
8
Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation.
Biomolecules. 2021 Oct 22;11(11):1569. doi: 10.3390/biom11111569.
10
Thiamine: a key nutrient for yeasts during wine alcoholic fermentation.
Appl Microbiol Biotechnol. 2021 Feb;105(3):953-973. doi: 10.1007/s00253-020-11080-2. Epub 2021 Jan 6.

本文引用的文献

1
Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts.
Appl Environ Microbiol. 1990 Jan;56(1):281-7. doi: 10.1128/aem.56.1.281-287.1990.
3
A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae.
J Biol Chem. 1999 Jul 23;274(30):21044-8. doi: 10.1074/jbc.274.30.21044.
4
A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes.
Yeast. 1999 Jul;15(10A):829-42. doi: 10.1002/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9.
8
Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae.
FEMS Microbiol Lett. 1998 Jul 1;164(1):29-34. doi: 10.1111/j.1574-6968.1998.tb13063.x.
10
The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase.
Yeast. 1997 Nov;13(14):1319-27. doi: 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验