Suppr超能文献

梭菌阳性和梭菌阴性酵母代谢通量的瞬态分析。

Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts.

机构信息

Department of Microbiology and Enzymology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 1990 Jan;56(1):281-7. doi: 10.1128/aem.56.1.281-287.1990.

Abstract

In bakers' yeast, an immediate alcoholic fermentation begins when a glucose pulse is added to glucose-limited, aerobically grown cells. The mechanism of this short-term Crabtree effect was investigated via a comparative enzymic analysis of eight yeast species. It was established that the fermentation rate of the organisms upon transition from glucose limitation to glucose excess is positively correlated with the level of pyruvate decarboxylase (EC 4.1.1.1). In the Crabtree-negative yeasts, the pyruvate decarboxylase activity was low and did not increase when excess glucose was added. In contrast, in the Crabtree-positive yeasts, the activity of this enzyme was on the average sixfold higher and increased after exposure to glucose excess. In Crabtree-negative species, relatively high activities of acetaldehyde dehydrogenases (EC 1.2.1.4 and EC 1.2.1.5) and acetyl coenzyme A synthetase (EC 6.2.1.1), in addition to low pyruvate decarboxylase activities, were present. Thus, in these yeasts, acetaldehyde can be effectively oxidized via a bypass that circumvents the reduction of acetaldehyde to ethanol. Growth rates of most Crabtree-positive yeasts did not increase upon transition from glucose limitation to glucose excess. In contrast, the Crabtree-negative yeasts exhibited enhanced rates of biomass production which in most cases could be ascribed to the intracellular accumulation of reserve carbohydrates. Generally, the glucose consumption rate after a glucose pulse was higher in the Crabtree-positive yeasts than in the Crabtree-negative yeasts. However, the respiratory capacities of steady-state cultures of Crabtree-positive yeasts were not significantly different from those of Crabtree-negative yeasts. Thus, a limited respiratory capacity is not the primary cause of the Crabtree effect in yeasts. Instead, the difference between Crabtree-positive and Crabtree-negative yeasts is attributed to differences in the kinetics of glucose uptake, synthesis of reserve carbohydrates, and pyruvate metabolism.

摘要

在面包酵母中,当向葡萄糖限制的、需氧生长的细胞中添加葡萄糖脉冲时,会立即开始酒精发酵。通过对八种酵母物种的比较酶分析,研究了这种短期 Crabtree 效应的机制。结果表明,从葡萄糖限制到葡萄糖过量时,生物体的发酵速率与丙酮酸脱羧酶(EC 4.1.1.1)的水平呈正相关。在 Crabtree 阴性酵母中,丙酮酸脱羧酶活性较低,当添加过量葡萄糖时不会增加。相比之下,在 Crabtree 阳性酵母中,该酶的活性平均高六倍,并且在暴露于葡萄糖过量后增加。在 Crabtree 阴性物种中,存在相对较高的乙醛脱氢酶(EC 1.2.1.4 和 EC 1.2.1.5)和乙酰辅酶 A 合成酶(EC 6.2.1.1)活性,以及较低的丙酮酸脱羧酶活性。因此,在这些酵母中,乙醛可以通过绕过乙醛还原为乙醇的旁路有效地被氧化。大多数 Crabtree 阳性酵母从葡萄糖限制到葡萄糖过量的生长速率没有增加。相比之下,Crabtree 阴性酵母表现出增强的生物量生产速率,在大多数情况下,这可以归因于细胞内储备碳水化合物的积累。通常,在葡萄糖脉冲后葡萄糖的消耗速率在 Crabtree 阳性酵母中高于 Crabtree 阴性酵母。然而,Crabtree 阳性酵母的稳态培养物的呼吸能力与 Crabtree 阴性酵母没有显著差异。因此,呼吸能力有限不是酵母中 Crabtree 效应的主要原因。相反,Crabtree 阳性和 Crabtree 阴性酵母之间的差异归因于葡萄糖摄取动力学、储备碳水化合物合成和丙酮酸代谢的差异。

相似文献

1
Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts.
Appl Environ Microbiol. 1990 Jan;56(1):281-7. doi: 10.1128/aem.56.1.281-287.1990.
2
Glucose transport in crabtree-positive and crabtree-negative yeasts.
J Gen Microbiol. 1989 Sep;135(9):2399-406. doi: 10.1099/00221287-135-9-2399.
3
Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
Appl Environ Microbiol. 1989 Feb;55(2):468-77. doi: 10.1128/aem.55.2.468-477.1989.
5
Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
J Biosci Bioeng. 2020 Jan;129(1):52-58. doi: 10.1016/j.jbiosc.2019.07.007. Epub 2019 Sep 16.
6
Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359.
Yeast. 1998 Mar 30;14(5):459-69. doi: 10.1002/(SICI)1097-0061(19980330)14:5<459::AID-YEA248>3.0.CO;2-O.
7
Kinetics of growth and sugar consumption in yeasts.
Antonie Van Leeuwenhoek. 1993;63(3-4):343-52. doi: 10.1007/BF00871229.
8
Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2112836118.
9
Analysis of the yeast short-term Crabtree effect and its origin.
FEBS J. 2014 Nov;281(21):4805-14. doi: 10.1111/febs.13019. Epub 2014 Sep 26.

引用本文的文献

1
Probing Intracellular Yeast Metabolism With Deuterium Magnetic Resonance Spectroscopy.
NMR Biomed. 2025 Oct;38(10):e70121. doi: 10.1002/nbm.70121.
5
Metabolic engineering of for biomass-based applications.
3 Biotech. 2022 Oct;12(10):259. doi: 10.1007/s13205-022-03324-x. Epub 2022 Sep 3.
6
A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations.
Nat Commun. 2021 Jun 16;12(1):3662. doi: 10.1038/s41467-021-23439-8.
8
Novel Crabtree negative yeast from rumen fluids can improve rumen fermentation and milk quality.
Sci Rep. 2021 Mar 18;11(1):6236. doi: 10.1038/s41598-021-85643-2.

本文引用的文献

1
Regulation of carbohydrate metabolism by enzyme competition.
Cold Spring Harb Symp Quant Biol. 1961;26:277-88. doi: 10.1101/sqb.1961.026.01.034.
3
Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis.
J Bacteriol. 1982 Sep;151(3):1146-52. doi: 10.1128/jb.151.3.1146-1152.1982.
4
Regulation of glucose metabolism in growing yeast cells.
Adv Microb Physiol. 1981;22:123-83. doi: 10.1016/s0065-2911(08)60327-6.
5
Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730-4. doi: 10.1073/pnas.80.6.1730.
6
The Crabtree effect: a regulatory system in yeast.
J Gen Microbiol. 1966 Aug;44(2):149-56. doi: 10.1099/00221287-44-2-149.
7
Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts.
Adv Microb Physiol. 1986;28:181-209. doi: 10.1016/s0065-2911(08)60239-8.
8
Glucose transport in a kinaseless Saccharomyces cerevisiae mutant.
J Bacteriol. 1987 Jul;169(7):2932-7. doi: 10.1128/jb.169.7.2932-2937.1987.
10
Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes.
J Bacteriol. 1987 Jul;169(7):2926-31. doi: 10.1128/jb.169.7.2926-2931.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验